UniFlow: Unified Normalizing Flow for Unsupervised Multi-Class Anomaly Detection

被引:0
|
作者
Zhong, Jianmei [1 ]
Song, Yanzhi [1 ,2 ]
机构
[1] School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei,230026, China
[2] Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, University of Science and Technology of China, Hefei,230026, China
基金
中国国家自然科学基金;
关键词
1106.3.1 Image Processing - 1106.6 Data Analytics - 1202.1 Probability Theory - 913.3 Quality Assurance and Control;
D O I
10.3390/info15120791
中图分类号
学科分类号
摘要
64
引用
收藏
相关论文
共 50 条
  • [21] Deep feature clustering for multi-class industrial image anomaly detection
    Wang, Rongxiang
    Li, Zhi
    Zheng, Long
    Wang, Weidong
    Li, Shuyun
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [22] Multi-Class Network Anomaly Detection Using Machine Learning Techniques
    Gunupusala, Satyanarayana
    Kaila, Shahu Chatrapathi
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 2335 - 2352
  • [23] MoEAD: A Parameter-Efficient Model for Multi-class Anomaly Detection
    Meng, Shiyuan
    Meng, Wenchao
    Zhou, Qihang
    Wei, Shizhong
    Hou, Weiye
    He, Shibo
    COMPUTER VISION - ECCV 2024, PT LXXXV, 2025, 15143 : 345 - 361
  • [24] Research on Visual Anomaly Detection Based on Multi-scale Normalizing Flow
    Mao G.-J.
    Wu X.-Z.
    Xing S.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (03): : 640 - 648
  • [25] Unsupervised Multi-class Sentiment Classification Approach
    Xu, Liwei
    Qiu, Jiangnan
    KNOWLEDGE ORGANIZATION, 2019, 46 (01): : 15 - 32
  • [26] Unsupervised Multi-Class Joint Image Segmentation
    Wang, Fan
    Huang, Qixing
    Ovsjanikov, Maks
    Guibas, Leonidas J.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3142 - 3149
  • [27] STAMPNET: UNSUPERVISED MULTI-CLASS OBJECT DISCOVERY
    Visser, Joost
    Corbetta, Alessandro
    Menkovski, Vlado
    Toschi, Federico
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2951 - 2955
  • [28] TOWARDS UNSUPERVISED LEARNING FOR AUTOMATIC MULTI-CLASS OBJECT DETECTION IN SURVEILLANCE VIDEOS
    Celik, Hasan
    Hanjalic, Alan
    Hendriks, Emile A.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3521 - 3524
  • [29] Robust Variational Autoencoders and Normalizing Flows for Unsupervised Network Anomaly Detection
    Najari, Naji
    Berlemont, Samuel
    Lefebvre, Gregoire
    Duffner, Stefan
    Garcia, Christophe
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 2, 2022, 450 : 281 - 292
  • [30] MIXED-ATTENTION AUTO ENCODER FOR MULTI-CLASS INDUSTRIAL ANOMALY DETECTION
    Liu, Jiangqi
    Wang, Feng
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 4120 - 4124