Neural Laplacian Operator for 3D Point Clouds

被引:0
|
作者
Pang, Bo [1 ]
Zheng, Zhongtian [1 ]
Li, Yilong [1 ]
Wang, Guoping [1 ]
Wang, Peng-shuai [2 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2024年 / 43卷 / 06期
基金
国家重点研发计划; 北京市自然科学基金;
关键词
Laplacian operator; point cloud; graph neural network; geometry processing;
D O I
10.1145/3687901
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The discrete Laplacian operator holds a crucial role in 3D geometry processing, yet it is still challenging to define it on point clouds. Previous works mainly focused on constructing a local triangulation around each point to approximate the underlying manifold for defining the Laplacian operator, which may not be robust or accurate. In contrast, we simply use the K-nearest neighbors (KNN) graph constructed from the input point cloud and learn the Laplacian operator on the KNN graph with graph neural networks (GNNs). However, the ground-truth Laplacian operator is defined on a manifold mesh with a different connectivity from the KNN graph and thus cannot be directly used for training. To train the GNN, we propose a novel training scheme by imitating the behavior of the ground-truth Laplacian operator on a set of probe functions so that the learned Laplacian operator behaves similarly to the ground-truth Laplacian operator. We train our network on a subset of ShapeNet and evaluate it across a variety of point clouds. Compared with previous methods, our method reduces the error by an order of magnitude and excels in handling sparse point clouds with thin structures or sharp features. Our method also demonstrates a strong generalization ability to unseen shapes. With our learned Laplacian operator, we further apply a series of Laplacian-based geometry processing algorithms directly to point clouds and achieve accurate results, enabling many exciting possibilities for geometry processing on point clouds. The code and trained models are available at https://github.com/IntelligentGeometry/NeLo.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Classification of Aerial Photogrammetric 3D Point Clouds
    Becker, C.
    Rosinskaya, E.
    Hani, N.
    d'Angelo, E.
    Strecha, C.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2018, 84 (05): : 287 - 295
  • [42] Geometric integrability and consistency of 3D point clouds
    Kamberov, George
    Kamberova, Gerda
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1995 - 2000
  • [43] Permuted Sparse Representation for 3D Point Clouds
    Hou, Junhui
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1847 - 1851
  • [44] Shape Recognition in 3D Point-Clouds
    Schnabel, Ruwen
    Wessel, Raoul
    Wahl, Roland
    Klein, Reinhard
    WSCG 2008, FULL PAPERS, 2008, : 65 - 72
  • [45] Registration of point clouds for 3D shape inspection
    Shi, Quan
    Xi, Ning
    Chen, Yifan
    Sheng, Weihua
    2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, : 235 - +
  • [46] A Staircase Detection Method for 3D Point Clouds
    Sinha, Arnab
    Papadakis, Panagiotis
    Elara, Mohan Rajesh
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 652 - 656
  • [47] Point Clouds: Lidar versus 3D Vision
    Leberl, F.
    Irschara, A.
    Pock, T.
    Meixner, P.
    Gruber, M.
    Scholz, S.
    Wiechert, A.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2010, 76 (10): : 1123 - 1134
  • [48] PERCEPTUAL QUALITY ASSESSMENT OF 3D POINT CLOUDS
    Su, Honglei
    Duanmu, Zhengfang
    Liu, Wentao
    Liu, Qi
    Wang, Zhou
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3182 - 3186
  • [49] Parallel Registration of 3D Ear Point Clouds
    Sun Xiaopeng
    Zhao Weiwei
    2016 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME), 2016, : 650 - 653
  • [50] Interactive Object Segmentation in 3D Point Clouds
    Kontogianni, Theodora
    Celikkan, Ekin
    Tang, Siyu
    Schindler, Konrad
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2891 - 2897