Context-Aware Self-Supervised Learning of Whole Slide Images

被引:0
|
作者
Aryal M. [1 ]
Yahya Soltani N. [1 ]
机构
[1] Department of Computer Science, Marquette University, Milwaukee, WI
来源
关键词
Artificial intelligence; Cancer; computational pathology; Feature extraction; graph convolutional networks; Kidney; kidney cancer; prostate cancer; Self-supervised learning; Task analysis; Training; whole slide image;
D O I
10.1109/TAI.2024.3365779
中图分类号
学科分类号
摘要
Presenting whole slide images (WSIs) as graph will enable a more efficient and accurate learning framework for cancer diagnosis. Due to the fact that a single WSI consists of billions of pixels and there is a lack of vast annotated datasets required for computational pathology, the problem of learning from WSIs using typical deep learning approaches such as convolutional neural network (CNN) is challenging. Additionally, WSIs down-sampling may lead to the loss of data that is essential for cancer detection. A novel two-stage learning technique is presented in this work. Since context, such as topological features in the tumor surroundings, may hold important information for cancer grading and diagnosis, a graph representation capturing all dependencies among regions in the WSI is very intuitive. Graph convolutional network (GCN) is deployed to include context from the tumor and adjacent tissues, and self-supervised learning is used to enhance training through unlabeled data. More specifically, the entire slide is presented as a graph, where the nodes correspond to the patches from the WSI. The proposed framework is then tested using WSIs from prostate and kidney cancers. IEEE
引用
收藏
页码:1 / 10
页数:9
相关论文
共 50 条
  • [21] Dual-Stream Context-Aware Neural Network for Survival Prediction from Whole Slide Images
    Gao, Junxiu
    Jin, Shan
    Wang, Ranran
    Wang, Mingkang
    Wang, Tong
    Xu, Hongming
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 3 - 14
  • [22] An efficient context-aware approach for whole-slide image classification
    Shen, Hongru
    Wu, Jianghua
    Shen, Xilin
    Hu, Jiani
    Liu, Jilei
    Zhang, Qiang
    Sun, Yan
    Chen, Kexin
    Li, Xiangchun
    ISCIENCE, 2023, 26 (12)
  • [23] Context Autoencoder for Self-supervised Representation Learning
    Chen, Xiaokang
    Ding, Mingyu
    Wang, Xiaodi
    Xin, Ying
    Mo, Shentong
    Wang, Yunhao
    Han, Shumin
    Luo, Ping
    Zeng, Gang
    Wang, Jingdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 132 (1) : 208 - 223
  • [24] Context Autoencoder for Self-supervised Representation Learning
    Xiaokang Chen
    Mingyu Ding
    Xiaodi Wang
    Ying Xin
    Shentong Mo
    Yunhao Wang
    Shumin Han
    Ping Luo
    Gang Zeng
    Jingdong Wang
    International Journal of Computer Vision, 2024, 132 : 208 - 223
  • [25] Improvements to context based self-supervised learning
    Mundhenk, T. Nathan
    Ho, Daniel
    Chen, Barry Y.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9339 - 9348
  • [26] Self-supervised Representation Learning on Document Images
    Cosma, Adrian
    Ghidoveanu, Mihai
    Panaitescu-Liess, Michael
    Popescu, Marius
    DOCUMENT ANALYSIS SYSTEMS, 2020, 12116 : 103 - 117
  • [27] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [28] Self-supervised Representation Learning for Astronomical Images
    Hayat, Md Abul
    Stein, George
    Harrington, Peter
    Lukic, Zarija
    Mustafa, Mustafa
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)
  • [29] Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images
    Li, Le
    Liang, Yong
    Shao, Mingwen
    Lu, Shanghui
    Liao, Shuilin
    Ouyang, Dong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [30] Structure-aware protein self-supervised learning
    Chen, Can
    Zhou, Jingbo
    Wang, Fan
    Liu, Xue
    Dou, Dejing
    BIOINFORMATICS, 2023, 39 (04)