Efficient uranium(VI) separation based on a layered 2D Ti3C2Tx/ hydroxyapatite hybrid membrane

被引:1
|
作者
Zhang, Yong [1 ]
Liu, Xuan [1 ]
Liu, Yujia [1 ]
Feng, Jiaqi [1 ]
Jiang, Kexing [1 ]
机构
[1] Southwest Univ Sci & Technol, Sichuan Coinnovat Ctr New Energet Mat, CAEA Innovat Ctr Nucl Environm Safety Technol, Sch Natl Def Sci & Technol,State Key Lab Environm, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; Hydroxyapatite; Membrane; Uranium; Separation;
D O I
10.1016/j.cej.2024.158707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lamellar membranes made from 2D materials have garnered significant attention as advanced separation materials for wastewater treatment, particularly for wastewater containing uranium (U(VI)). Nevertheless, it is still a great challenge to obtain assembled lamellar membranes with both high flux and retention rate from 2D materials. In this work, a method of in-situ loading hydroxyapatite nanoparticles onto MXene nanosheets and vacuum filtration to form a novel Ti3C2Tx MXene/hydroxyapatite (MXene/HAP, MXHP) membrane had been developed for separating U(VI) from wastewater. From the characterization results, the MXHP membrane displayed an increasing trend of interfacial pores and interlayer channels for comparison to the pure MXene membrane, which could notably improve water permeability of MXHP membrane. Based on membrane separation experiments, the MXHP-2 membrane achieved a flux of 515.5 L/(m2 & sdot;h & sdot;bar) and a U(VI) retention rate of 98.2 % in the treatment of U(VI)-containing wastewater. Additionally, the MXHP-2 membrane exhibited strong recyclability with a high U(VI) retention rate of 85.3 % after five cycles. The U(VI) separation mechanism of MXHP-2 was photocatalytic reduction assisted dissolution-deposition. The above results could provide valuable insights for developing new composite membranes with high throughput and high uranium retention rate.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Fabrication and characterization of Ti3C2TX MXene-based bipolar membrane
    Celik, Aytekin
    Aksoy, Yunus
    Hanay, Ozge
    Yegin, Mustafa
    Kose, Yusuf
    Demirelli, Kadir
    Hasar, Halil
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, : 1281 - 1294
  • [42] Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite
    Aissa, B.
    Ali, A.
    Mahmoud, K. A.
    Haddad, T.
    Nedil, M.
    APPLIED PHYSICS LETTERS, 2016, 109 (04)
  • [43] Anomalous Radio Frequency Conductivity and Sheet Resistance of 2D Ti3C2Tx MXene
    Tajin, Md Abu Saleh
    Dandekar, Kapil R.
    IEEE ACCESS, 2022, 10 : 25850 - 25856
  • [44] Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing
    Zhang, Kaiyu
    Di, Maoyun
    Fu, Lin
    Deng, Yu
    Du, Youwei
    Tang, Nujiang
    CARBON, 2020, 157 : 90 - 96
  • [45] 2D MXene Ti3C2Tx Enhanced Plasmonic Absorption in Metasurface for Terahertz Shielding
    Ullah, Zaka
    Al Hasan, Muath
    Ben Mabrouk, Ismail
    Junaid, Muhammad
    Sheikh, Fawad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 3453 - 3464
  • [46] Highly Efficient Adsorption of Bilirubin by Ti3C2Tx MXene
    Sun, Xiaoyu
    Yang, Jian
    Su, Dawei
    Wang, Chengyin
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) : 1949 - 1955
  • [47] Hybrid microsupercapacitors based on Ti3C2Tx MXene and covalent organic frameworks
    Khan, Yusuf
    Kale, Vinayak S.
    El-Demellawi, Jehad K.
    Lei, Yongjiu
    Zhao, Wenli
    Kandambeth, Sharath
    Parvatkar, Prakash T.
    Shekhah, Osama
    Eddaoudi, Mohamed
    Alshareef, Husam N.
    MATERIALS TODAY ENERGY, 2024, 44
  • [48] Fabrication and characterization of Ti3C2TX MXene-based bipolar membrane
    Çelik, Aytekin
    Aksoy, Yunus
    Hanay, Özge
    Yegin, Mustafa
    Köse, Yusuf
    Demirelli, Kadir
    Hasar, Halil
    Journal of Applied Electrochemistry, 2024,
  • [49] 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites for detection of triethylamine at low temperature
    Liang, Dong
    Song, Peng
    Liu, Miao
    Wang, Qi
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9059 - 9066
  • [50] 2D Ferrous Ion-Crosslinked Ti3C2Tx MXene Aerogel Evaporators for Efficient Solar Steam Generation
    Li, Xiao-Peng
    Li, Xiaofeng
    Li, Heguo
    Zhao, Yue
    Li, Wei
    Yan, Shouke
    Yu, Zhong-Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (12):