Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting

被引:0
|
作者
Teng, Xiao [1 ]
Zhang, Guixiang [1 ]
Zhao, Yugang [1 ]
Cui, Yuntao [1 ]
Li, Linguang [1 ]
Jiang, Linzhi [1 ]
机构
[1] School of Mechanical Engineering, Shandong University of Technology, Zibo,255000, China
关键词
Finish machining - Grinding process - Industrial production - Magnetic abrasive finishing - Manufacturing industries - Post-treatment process - Selective laser melting (SLM) - Surface hardness;
D O I
暂无
中图分类号
学科分类号
摘要
Selective laser melting (SLM) technology is playing an increasingly important role in today’s manufacturing industry. However, the surface quality of SLM samples is relatively poor and cannot be directly applied to industrial production. Therefore, this paper focuses on the post-treatment process of SLM AlSi10Mg alloy. First, the rough machining is performed by a grinding process (GP), and then, the magnetic abrasive finishing (MAF) is used for finish machining. The experiment results show that the combination of GP and MAF can effectively reduce the surface roughness and improve the surface quality of SLM AlSi10Mg alloy. The GP reduced the surface roughness to drop from 7 μm (after SLM forming) to about 0.6 μm, and the rough surface with defects such as spheroids and pits evolved into the fine surface with scratches and pores. The MAF reduced the surface roughness to a minimum of 0.155 μm, which resulted in excellent surface morphology. The surface hardness after the GP was higher, and the MAF reduced the hardness of the GP surface. © 2019, Springer-Verlag London Ltd., part of Springer Nature.
引用
收藏
页码:2513 / 2521
相关论文
共 50 条
  • [21] Rapid Solidification: Selective Laser Melting of AlSi10Mg
    Tang, Ming
    Pistorius, P. Chris
    Narra, Sneha
    Beuth, Jack L.
    JOM, 2016, 68 (03) : 960 - 966
  • [22] Causes of Defects in Selective Laser Melting of AlSi10Mg
    Yao, Shuguang
    Dong, Yunhui
    Li, Xianglong
    Xie, Minhan
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (16):
  • [23] Causes of Defects in Selective Laser Melting of AlSi10Mg
    Yao, Shuguang
    Dong, Yunhui
    Li, Xianglong
    Xie, Minhan
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (16):
  • [24] Rapid Solidification: Selective Laser Melting of AlSi10Mg
    Ming Tang
    P. Chris Pistorius
    Sneha Narra
    Jack L. Beuth
    JOM, 2016, 68 : 960 - 966
  • [25] A review on the simulation of selective laser melting AlSi10Mg
    Wang, Xingyao
    Lu, Qinghua
    Zhang, Peilei
    Yan, Hua
    Shi, Haichuan
    Sun, Tianzhu
    Zhou, Kai
    Chen, Kaiyuan
    OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [26] Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting
    Takata, Naoki
    Kodaira, Hirohisa
    Suzuki, Asuka
    Kobashi, Makoto
    MATERIALS CHARACTERIZATION, 2018, 143 : 18 - 26
  • [27] A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy
    Marola, Silvia
    Manfredi, Diego
    Fiore, Gianluca
    Poletti, Marco Gabriele
    Lombardi, Mariangela
    Fino, Paolo
    Battezzati, Livio
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 742 : 271 - 279
  • [28] On the capability of grain refinement during selective laser melting of AlSi10Mg alloy
    Ghashghay, B. Rozegari
    Abedi, H. R.
    Shabestari, S. G.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 9722 - 9730
  • [29] Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting
    Liu, Mulin
    Takata, Naoki
    Suzuki, Asuka
    Kobashi, Makoto
    MATERIALS & DESIGN, 2018, 157 : 478 - 491
  • [30] Microstructural evolution and characterization of AlSi10Mg alloy manufactured by selective laser melting
    Dong, Zhichao
    Xu, Mengchen
    Guo, Haowei
    Fei, Xiangyu
    Liu, Yabo
    Gong, Benkui
    Ju, Guannan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 2343 - 2354