Embedding of time series data by using Dynamic Time Warping distances

被引:4
|
作者
Graduate School of Information Sciences, Hiroshima City University, Hiroshima, 731-3194, Japan [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
不详 [6 ]
不详 [7 ]
不详 [8 ]
不详 [9 ]
不详 [10 ]
机构
来源
Syst Comput Jpn | 2006年 / 3卷 / 1-9期
关键词
Classification (of information) - Data reduction - Eigenvalues and eigenfunctions - Embedded systems - Laplace transforms - Vector quantization;
D O I
10.1002/scj.20486
中图分类号
学科分类号
摘要
We propose an approach to embedding time series data in a vector space based on the distances obtained from Dynamic Time Warping (DTW), and classifying them in the embedded space. Under the problem formulation in which both labeled data and unlabeled data are given beforehand, we consider three embeddings: embedding in a Euclidean space by MDS, embedding in a pseudo-Euclidean space, and embedding in a Euclidean space by the Laplacian eigenmap technique. We have found through analysis and experiment that embedding by the Laplacian eigenmap method leads to the best classification results. Furthermore, the proposed approach with Laplacian eigenmap embedding gives better performance than the k nearest neighbor method. © 2006 Wiley Periodicals, Inc.
引用
收藏
相关论文
共 50 条
  • [31] Weighted dynamic time warping for time series classification
    Jeong, Young-Seon
    Jeong, Myong K.
    Omitaomu, Olufemi A.
    PATTERN RECOGNITION, 2011, 44 (09) : 2231 - 2240
  • [32] HybridFTW: Hybrid Computation of Dynamic Time Warping Distances
    Lee, Minwoo
    Lee, Sanghun
    Choi, Mi-Jung
    Moon, Yang-Sae
    Lim, Hyo-Sang
    IEEE ACCESS, 2018, 6 : 2085 - 2096
  • [33] Discovering time series motifs of all lengths using dynamic time warping
    Chao, Zemin
    Gao, Hong
    Miao, Dongjing
    Wang, Hongzhi
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 3815 - 3836
  • [34] Discovering time series motifs of all lengths using dynamic time warping
    Zemin Chao
    Hong Gao
    Dongjing Miao
    Hongzhi Wang
    World Wide Web, 2023, 26 : 3815 - 3836
  • [35] Time-series averaging using constrained dynamic time warping with tolerance
    Morel, Marion
    Achard, Catherine
    Kulpa, Richard
    Dubuisson, Severine
    PATTERN RECOGNITION, 2018, 74 : 77 - 89
  • [36] Dynamic time warping based on cubic spline interpolation for time series data mining
    Li, Hailin
    Wan, Xiaoji
    Liang, Ye
    Gao, Shile
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 19 - 26
  • [37] Downsampling of Time-series Data for Approximated Dynamic Time Warping on Nonvolatile Memories
    Li, Xingni
    Gu, Yi
    Huang, Po-Chun
    Liu, Duo
    Liang, Liang
    2017 IEEE 6TH NON-VOLATILE MEMORY SYSTEMS AND APPLICATIONS SYMPOSIUM (NVMSA 2017), 2017,
  • [38] Combining raw and normalized data in multivariate time series classification with dynamic time warping
    Luczak, Maciej
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (01) : 373 - 380
  • [39] Invariant subspace learning for time series data based on dynamic time warping distance
    Deng, Huiqi
    Chen, Weifu
    Shen, Qi
    Ma, Andy J.
    Yuen, Pong C.
    Feng, Guocan
    PATTERN RECOGNITION, 2020, 102
  • [40] Clustering time series with Granular Dynamic Time Warping method
    Yu, Fusheng
    Dong, Keqiang
    Chen, Fei
    Jiang, Yongke
    Zeng, Wenyi
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 393 - +