Riding feeling recognition based on multi-head self-attention LSTM for driverless automobile

被引:1
|
作者
Tang, Xianzhi [1 ]
Xie, Yongjia [1 ]
Li, Xinlong [1 ]
Wang, Bo [1 ]
机构
[1] Yanshan Univ, Sch Vehicles & Energy, Hebei Key Lab Special Carrier Equipment, Hebei St, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography (EEG); Attention; Feature extraction; Driving experience;
D O I
10.1016/j.patcog.2024.111135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the emergence of driverless technology, passenger ride comfort has become an issue of concern. In recent years, driving fatigue detection and braking sensation evaluation based on EEG signals have received more attention, and analyzing ride comfort using EEG signals is also a more intuitive method. However, it is still a challenge to find an effective method or model to evaluate passenger comfort. In this paper, we propose a longand short-term memory network model based on a multiple self-attention mechanism for passenger comfort detection. By applying the multiple attention mechanism to the feature extraction process, more efficient classification results are obtained. The results show that the long- and short-term memory network using the multihead self-attention mechanism is efficient in decision making along with higher classification accuracy. In conclusion, the classifier based on the multi-head attention mechanism proposed in this paper has excellent performance in EEG classification of different emotional states, and has a broad development prospect in braincomputer interaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multi-modal multi-head self-attention for medical VQA
    Joshi, Vasudha
    Mitra, Pabitra
    Bose, Supratik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42585 - 42608
  • [22] Text summarization based on multi-head self-attention mechanism and pointer network
    Qiu, Dong
    Yang, Bing
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (01) : 555 - 567
  • [23] Multi-head enhanced self-attention network for novelty detection
    Zhang, Yingying
    Gong, Yuxin
    Zhu, Haogang
    Bai, Xiao
    Tang, Wenzhong
    PATTERN RECOGNITION, 2020, 107
  • [24] Neural Linguistic Steganalysis via Multi-Head Self-Attention
    Jiao, Sai-Mei
    Wang, Hai-feng
    Zhang, Kun
    Hu, Ya-qi
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021 (2021)
  • [25] Text summarization based on multi-head self-attention mechanism and pointer network
    Dong Qiu
    Bing Yang
    Complex & Intelligent Systems, 2022, 8 : 555 - 567
  • [26] Multi-modal multi-head self-attention for medical VQA
    Vasudha Joshi
    Pabitra Mitra
    Supratik Bose
    Multimedia Tools and Applications, 2024, 83 : 42585 - 42608
  • [27] Personalized News Recommendation with CNN and Multi-Head Self-Attention
    Li, Aibin
    He, Tingnian
    Guo, Yi
    Li, Zhuoran
    Rong, Yixuan
    Liu, Guoqi
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 102 - 108
  • [28] Deep Bug Triage Model Based on Multi-head Self-attention Mechanism
    Yu, Xu
    Wan, Fayang
    Tang, Bin
    Zhan, Dingjia
    Peng, Qinglong
    Yu, Miao
    Wang, Zhaozhe
    Cui, Shuang
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 107 - 119
  • [29] Multi-head Self-attention Recommendation Model based on Feature Interaction Enhancement
    Yin, Yunfei
    Huang, Caihao
    Sun, Jingqin
    Huang, Faliang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1740 - 1745
  • [30] Personalized multi-head self-attention network for news recommendation
    Zheng, Cong
    Song, Yixuan
    NEURAL NETWORKS, 2025, 181