Source apportionment of stack emissions from research and development facilities using positive matrix factorization

被引:0
|
作者
机构
[1] Ballinger, Marcel Y.
[2] Larson, Timothy V.
来源
Ballinger, M.Y. (marcel.ballinger@pnnl.gov) | 1600年 / Elsevier Ltd卷 / 98期
关键词
Bootstrapping - Concentration profiles - Ethanol emissions - Positive Matrix Factorization - Research and development - Source apportionment - Stack emissions - Volatile organic compound (VOC);
D O I
暂无
中图分类号
学科分类号
摘要
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. © 2014.
引用
收藏
相关论文
共 50 条
  • [31] Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany
    Yue, Wei
    Stoelzel, Matthias
    Cyrys, Josef
    Pitz, Mike
    Heinrich, Joachim
    Kreyling, Wolfgang G.
    Wichmann, H. -Erich
    Peters, Annette
    Wang, Sheng
    Hopke, Philip K.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2008, 398 (1-3) : 133 - 144
  • [32] Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization
    Amrita Jaiprakash
    Gazala Singhai
    Ramya Sunder Habib
    Tarun Raman
    Environmental Science and Pollution Research, 2017, 24 : 445 - 462
  • [33] Source Apportionment of PM10 at Pyeongtaek Area Using Positive Matrix Factorization (PMF) Model
    Heo, Jongwon
    Kim, Chanhyuk
    Min, Yoonki
    Kim, Hyeonja
    Sung, Yeongook
    Kim, Jongsoo
    Lee, Kyoungbin
    Heo, Jongbae
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2018, 34 (06) : 849 - 864
  • [34] Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization
    Jaiprakash
    Singhai, Amrita
    Habib, Gazala
    Raman, Ramya Sunder
    Gupta, Tarun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (01) : 445 - 462
  • [35] Source apportionment analysis of airborne VOCs using positive matrix factorization in industrial and urban areas in Thailand
    Saeaw, Neungrothai
    Thepanondh, Sarawut
    ATMOSPHERIC POLLUTION RESEARCH, 2015, 6 (04) : 644 - 650
  • [36] Organic aerosol source apportionment by using rolling positive matrix factorization: Application to a Mediterranean coastal city
    Chazeau, Benjamin
    El Haddad, Imad
    Canonaco, Francesco
    Temime-Roussel, Brice
    D'Anna, Barbara
    Gille, Gregory
    Mesbah, Boualem
    Prevot, Andre S. H.
    Wortham, Henri
    ATMOSPHERIC ENVIRONMENT-X, 2022, 14
  • [37] Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India
    Sharma, S. K.
    Mandal, T. K.
    Saxena, Mohit
    Rashmi
    Rohtash
    Sharma, A.
    Gautam, R.
    URBAN CLIMATE, 2014, 10 : 656 - 670
  • [38] Source Apportionment of PM2.5 Using Positive Matrix Factorization (PMF) and PMF with Factor Selection
    Molnar, Peter
    Johannesson, Sandra
    Quass, Ulrich
    AEROSOL AND AIR QUALITY RESEARCH, 2014, 14 (03) : 725 - U711
  • [39] Source Apportionment of Total Suspended Particulates in an Arid Area in Southwestern Iran Using Positive Matrix Factorization
    Mohammad Hossein Sowlat
    Kazem Naddafi
    Masud Yunesian
    Peter L. Jackson
    Abbas Shahsavani
    Bulletin of Environmental Contamination and Toxicology, 2012, 88 : 735 - 740
  • [40] Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers
    Zhang, YuanXun
    Sheesley, Rebecca J.
    Schauer, James J.
    Lewandowski, Michael
    Jaoui, Mohammed
    Offenberg, John H.
    Kleindienst, Tadeusz E.
    Edney, Edward O.
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (34) : 5567 - 5574