Mutual information-driven self-supervised point cloud pre-training

被引:0
|
作者
Xu, Weichen [1 ]
Fu, Tianhao [1 ]
Cao, Jian [1 ]
Zhao, Xinyu [1 ]
Xu, Xinxin [1 ]
Cao, Xixin [1 ]
Zhang, Xing [1 ,2 ]
机构
[1] Peking Univ, Sch Software & Microelect, Beijing 100871, Peoples R China
[2] Peking Univ, Shenzhen Grad Sch, Key Lab Integrated Microsyst, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-supervised learning; Autonomous driving; Point cloud scene understanding; Mutual information; High-level features; OPTIMIZATION;
D O I
10.1016/j.knosys.2024.112741
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning universal representations from unlabeled 3D point clouds is essential to improve the generalization and safety of autonomous driving. Generative self-supervised point cloud pre-training with low-level features as pretext tasks is a mainstream paradigm. However, from the perspective of mutual information, this approach is constrained by spatial information and entangled representations. In this study, we propose a generalized generative self-supervised point cloud pre-training framework called GPICTURE. High-level features were used as an additional pretext task to enhance the understanding of semantic information. Considering the varying difficulties caused by the discrimination of voxel features, we designed inter-class and intra-class discrimination-guided masking (I2Mask) to set the masking ratio adaptively. Furthermore, to ensure a hierarchical and stable reconstruction process, centered kernel alignment-guided hierarchical reconstruction and differential-gated progressive learning were employed to control multiple reconstruction tasks. Complete theoretical analyses demonstrated that high-level features can enhance the mutual information between latent features and high-level features, as well as the input point cloud. On Waymo, nuScenes, and SemanticKITTI, we achieved a 75.55% mAP for 3D object detection, 79.7% mIoU for 3D semantic segmentation, and 18.8% mIoU for occupancy prediction. Specifically, with only 50% of the fine-tuning data required, the performance of GPICURE was close to that of training from scratch with 100% of the fine-tuning data. In addition, consistent visualization with downstream tasks and a 57% reduction in weight disparity demonstrated a better fine-tuning starting point. The project page is hosted at https://gpicture-page.github.io/.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] DenseCL: A simple framework for self-supervised dense visual pre-training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    VISUAL INFORMATICS, 2023, 7 (01) : 30 - 40
  • [42] Feature-Suppressed Contrast for Self-Supervised Food Pre-training
    Liu, Xinda
    Zhu, Yaohui
    Liu, Linhu
    Tian, Jiang
    Wang, Lili
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4359 - 4367
  • [43] MULTI-TASK SELF-SUPERVISED PRE-TRAINING FOR MUSIC CLASSIFICATION
    Wu, Ho-Hsiang
    Kao, Chieh-Chi
    Tang, Qingming
    Sun, Ming
    McFee, Brian
    Bello, Juan Pablo
    Wang, Chao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 556 - 560
  • [44] PreTraM: Self-supervised Pre-training via Connecting Trajectory and Map
    Xu, Chenfeng
    Li, Tian
    Tang, Chen
    Sun, Lingfeng
    Keutzer, Kurt
    Tomizuka, Masayoshi
    Fathi, Alireza
    Zhan, Wei
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 34 - 50
  • [45] Self-supervised Pre-training with Acoustic Configurations for Replay Spoofing Detection
    Shim, Hye-jin
    Heo, Hee-Soo
    Jung, Jee-weon
    Yu, Ha-Jin
    INTERSPEECH 2020, 2020, : 1091 - 1095
  • [46] Self-supervised Pre-training and Semi-supervised Learning for Extractive Dialog Summarization
    Zhuang, Yingying
    Song, Jiecheng
    Sadagopan, Narayanan
    Beniwal, Anurag
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 1069 - 1076
  • [47] Self-Supervised Underwater Image Generation for Underwater Domain Pre-Training
    Wu, Zhiheng
    Wu, Zhengxing
    Chen, Xingyu
    Lu, Yue
    Yu, Junzhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [48] COMPARISON OF SELF-SUPERVISED SPEECH PRE-TRAINING METHODS ON FLEMISH DUTCH
    Poncelet, Jakob
    Hamme, Hugo Van
    2021 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2021, : 169 - 176
  • [49] Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels
    Zheltonozhskii, Evgenii
    Baskin, Chaim
    Mendelson, Avi
    Bronstein, Alex M.
    Litany, Or
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 387 - 397
  • [50] The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models
    Chen, Tianlong
    Frankle, Jonathan
    Chang, Shiyu
    Liu, Sijia
    Zhang, Yang
    Carbin, Michael
    Wang, Zhangyang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16301 - 16311