Diagnosis of osteoporosis using intelligence of optimized extreme learning machine with improved artificial algae algorithm

被引:0
|
作者
Devikanniga D. [1 ]
机构
[1] Department of Computer Science and Engineering, Anna University, Chennai
关键词
Artificial algae algorithm; Classification; Metaheuristic optimization; Monarch butterfly optimization; Osteoporosis;
D O I
10.1016/j.ijin.2020.05.004
中图分类号
学科分类号
摘要
Osteoporosis is the silent killer disease that mostly occur in elderly people because of bone fragility and fracture. Early and accurate diagnosis of osteoporosis saves the patient life. This work focuses on developing an efficient classifier model to support this issue. For this, the proven Extreme learning machine (ELM) is selected. Then a novel hybrid metaheuristic optimization algorithm is developed on fusing two nature inspired metaheuristic optimization algorithms namely Artificial algae algorithm with multi-light source and Monarch butterfly optimization algorithm. It is named as HMBA algorithm. To further increase the diagnostic accuracy of ELM, it is optimized using HMBA. This proposed HMBA-ELM classifier model is used to diagnose osteoporosis from normal subjects. The discrimination efficiency of proposed classifier is compared with other similar classifiers based on the results produced. It is found that the proposed HMBA- ELM has yielded outstanding results mainly in terms of (sensitivity ​± ​SD/specificity ​± ​SD/precision ​± ​SD/MCR±SD/accuracy ±SD) as (99.45 ​± ​0.69/99.77 ​± ​0.31/96.32 ​± ​0.12/0.30 ​± ​0.18/99.70 ​± ​0.21), (98.11 ​± ​0.91/99.56 ​± ​0.28/90.03 ​± ​0.19/0.51 ​± ​0.09/99.49 ​± ​0.18) and (99.26 ​± ​1.13/99.54 ​± ​0.33/97.38 ​± ​0.22/0.4 ​± ​0.31/99.6 ​± ​0.32) respectively for three osteoporosis datasets namely Femoral neck, Lumbar spine and Femoral & Spine. This is highest among all other approaches with less computation time. © 2020 The Author(s)
引用
收藏
页码:43 / 51
页数:8
相关论文
共 50 条
  • [21] Extreme learning machine based on improved genetic algorithm
    Liu, Hai
    Jiao, Bin
    Peng, Long
    Zhang, Ting
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS, 2015, 21 : 199 - 204
  • [22] Artificial intelligence and machine learning in cancer diagnosis and treatment
    Luethy, Isabel A.
    MEDICINA-BUENOS AIRES, 2022, 82 (05) : 798 - 800
  • [23] Machine learning: applications of artificial intelligence to imaging and diagnosis
    Nichols J.A.
    Herbert Chan H.W.
    Baker M.A.B.
    Biophysical Reviews, 2019, 11 (1) : 111 - 118
  • [24] Artificial intelligence/machine learning for epilepsy and seizure diagnosis
    Han, Kenneth
    Liu, Chris
    Friedman, Daniel
    EPILEPSY & BEHAVIOR, 2024, 155
  • [25] Improved Ensemble Extreme Learning Machine Regression Algorithm
    Li, Meiyi
    Cai, Weibiao
    Liu, Xingwang
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 12 - 19
  • [26] Speech emotion recognition using optimized genetic algorithm-extreme learning machine
    Albadr, Musatafa Abbas Abbood
    Tiun, Sabrina
    Ayob, Masri
    AL-Dhief, Fahad Taha
    Omar, Khairuddin
    Maen, Mhd Khaled
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 23963 - 23989
  • [27] An interpretable schizophrenia diagnosis framework using machine learning and explainable artificial intelligence
    Shivaprasad, Samhita
    Chadaga, Krishnaraj
    Dias, Cifha Crecil
    Sampathila, Niranjana
    Prabhu, Srikanth
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [28] Cognitive Computational Model Using Machine Learning Algorithm in Artificial Intelligence Environment
    Liu, Shangyi
    Spiridonidis, Constantin-Viktor
    Abdulrazzqa, Mohammed
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (01) : 901 - 916
  • [29] Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm
    Zhou, Jianguo
    Chen, Dongfeng
    SUSTAINABILITY, 2021, 13 (09)
  • [30] Optimized Extreme Learning Machine by an Improved Harris Hawks Optimization Algorithm for Mine Fire Flame Recognition
    Nan, Juan
    Wang, Jian
    Wu, Hao
    Li, Kun
    MINING METALLURGY & EXPLORATION, 2023, 40 (01) : 367 - 388