Performance Analysis of Uplink Rate-Splitting Multiple Access With Hybrid ARQ

被引:0
|
作者
Liu, Yuanwen [1 ]
Clerckx, Bruno [1 ]
Popovski, Petar [2 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Aalborg Univ, Dept Elect Syst, DK-9220 Aalborg, Denmark
关键词
NOMA; Uplink; Resource management; Reliability; Frequency division multiaccess; Error probability; Interference cancellation; Hybrid ARQ; rate-splitting multiple access; uplink; power allocation; ENERGY EFFICIENCY; NOMA; PROTOCOLS; SYSTEMS; URLLC;
D O I
10.1109/TWC.2024.3410315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rate-splitting multiple access (RSMA) has attracted a lot of attention as a general and powerful multiple access scheme. In the uplink, instead of encoding the whole message into one stream, a user can split its message into two parts and encode them into two streams before transmitting a superposition of these two streams. The base station (BS) uses successive interference cancellation (SIC) to decode the streams and reconstruct the original messages. Focusing on the packet transmission reliability, we investigate the features of RSMA in the context of hybrid automatic repeat request (HARQ), a well-established mechanism for enhancing reliability. This work proposes a HARQ scheme for uplink RSMA with different retransmission times for a two-user scenario and introduces a power allocation strategy for the two split streams. The results show that compared with non-orthogonal multiple access (NOMA) and frequency division multiple access (FDMA), RSMA outperforms them in terms of error probability and power consumption. The results show that RSMA with HARQ has the potential to improve the reliability and efficiency of wireless communication systems.
引用
收藏
页码:14201 / 14214
页数:14
相关论文
共 50 条
  • [41] Precoding Optimization Assisted Secure Transmission for Rate-Splitting Multiple Access
    Li, Dongdong
    Yang, Zhutian
    Zhao, Nan
    Chen, Yunfei
    Wu, Zhilu
    Li, Yonghui
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 673 - 678
  • [42] Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends
    Mao, Yijie
    Dizdar, Onur
    Clerckx, Bruno
    Schober, Robert
    Popovski, Petar
    Poor, H. Vincent
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (04): : 2073 - 2126
  • [43] Energy Efficiency of Rate-Splitting Multiple Access for Multibeam Satellite Communications
    Liu, Jinyuan
    Guan, Yong Liang
    Ge, Yao
    Yin, Longfei
    Clerckx, Bruno
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [44] Reduced Complexity Rate-Splitting Multiple Access Beamforming for Generalized Objectives
    Sadeghabadi, Elaheh
    Blostein, Steven D.
    IEEE ACCESS, 2024, 12 : 155958 - 155975
  • [45] Rate-Splitting Multiple Access and Its Interplay with Intelligent Reflecting Surfaces
    de Sena, Arthur S.
    Nardelli, Pedro H. J.
    da Costa, Daniel B.
    Popovski, Petar
    Papadias, Constantinos B.
    IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (07) : 52 - 57
  • [46] Jamming-Based Covert Communication for Rate-Splitting Multiple Access
    Trung Thanh Nguyen
    Nguyen Cong Luong
    Feng, Shaohan
    Elbassioni, Khaled
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (08) : 11074 - 11079
  • [47] Rate-Splitting Multiple Access Scheme Based on Frequency Diverse Array
    Liu, Penglu
    Dong, Xiaodai
    Li, Yong
    Cheng, Wei
    Zhang, Wenjie
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) : 2108 - 2112
  • [48] On the Use of PAM versus QAM Constellations in Rate-Splitting Multiple Access
    Pendas-Recondo, Alvaro
    Lopez-Fernandez, Jesus Alberto
    Ayestaran, Rafael Gonzalez
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 921 - 925
  • [49] Rate-Splitting Multiple Access for Indoor Visible Light Communication Networks
    Naser, Shimaa A.
    Sofotasios, Paschalis C.
    Muhaidat, Sami
    Al-Qutayri, Mahmoud
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2021,
  • [50] Rate-Splitting Multiple Access for Multigroup Multicast and Multibeam Satellite Systems
    Yin, Longfei
    Clerckx, Bruno
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (02) : 976 - 990