Constructions of generalized bent boolean functions on odd number of variables

被引:0
|
作者
Zhao, Yong-Bin [1 ,2 ]
Zhang, Feng-Rong [3 ]
Hu, Yu-Pu [1 ]
机构
[1] State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an,710071, China
[2] School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang,050043, China
[3] School of Computer Science and Technology, China University of Mining and Technology, Xuzhou,Jiangsu,221116, China
来源
International Journal of Hybrid Information Technology | 2015年 / 8卷 / 05期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.14257/ijhit.2015.8.5.09
中图分类号
学科分类号
摘要
引用
收藏
页码:91 / 96
相关论文
共 50 条
  • [21] Evolving Algebraic Constructions for Designing Bent Boolean Functions
    Picek, Stjepan
    Jakobovic, Domagoj
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 781 - 788
  • [22] Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables
    Zhang, WeiGuo
    Xiao, GuoZhen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (12) : 5822 - 5831
  • [23] Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity
    Li, N
    Qi, WF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2271 - 2273
  • [24] A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables
    Qu, Longjiang
    Li, Chao
    Feng, Keqin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) : 2908 - 2910
  • [25] Generic Constructions of (Boolean and Vectorial) Bent Functions and Their Consequences
    Li, Yanjun
    Kan, Haibin
    Mesnager, Sihem
    Peng, Jie
    Tan, Chik How
    Zheng, Lijing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (04) : 2735 - 2751
  • [26] Piecewise Constructions of Bent and Almost Optimal Boolean Functions
    Claude Carlet
    Joseph L. Yucas
    Designs, Codes and Cryptography, 2005, 37 : 449 - 464
  • [27] A Note on Generalized Bent Criteria for Boolean Functions
    Gangopadhyay, Sugata
    Pasalic, Enes
    Stanica, Pantelimon
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3233 - 3236
  • [28] Generalized bent criteria for Boolean functions (I)
    Riera, Constanza
    Parker, Matthew G.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4142 - 4159
  • [29] New Secondary Constructions of Generalized Bent Functions
    YANG Zhiyao
    KE Pinhui
    CHEN Zhixiong
    ChineseJournalofElectronics, 2021, 30 (06) : 1022 - 1029
  • [30] New Secondary Constructions of Generalized Bent Functions
    Yang Zhiyao
    Ke Pinhui
    Chen Zhixiong
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (06) : 1022 - 1029