First-principles calculations of tellurium-related doping in diamond

被引:0
|
作者
Yang, Yu-Tao [1 ]
Wang, Wen-Dan [1 ]
Tang, Min-Xuan [1 ]
Liu, Wei-Hong [1 ]
Liu, Qi-Jun [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
First principles calculations; Te doped diamond; Se-Te co-doped diamond; Carbon vacancy; ELECTRONIC-STRUCTURE; BORON; HYDROGEN; SULFUR; DONOR;
D O I
10.1016/j.diamond.2024.111831
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The impacts of tellurium (Te) doping and selenium-tellurium (Se-Te) co-doping on the electronic structure of diamond are investigated by applying density functional theory (DFT). The formation energies, band structures, densities of states (DOS), electronic properties and electron effective masses of the introduced defects are analyzed. Furthermore, the study investigates the impact of the number of carbon vacancies associated with Te atoms on diamond doping. The results show that a carbon vacancy greatly reduces the difficulty of doping Te in diamond. In Se-Te co-doped diamond, charge difference density analysis and Bader's method confirm that the Se-Te structures display n-type semiconducting behavior, with Se and Te atoms serving as acceptors in the diamond. Moreover, the calculated effective mass of electron in the SeTeV structure is notably lower than that of pure diamond. This discrepancy indicates that SeTeV doping could substantially augment the electron mobility in diamond.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Hydrogen storage of beryllium adsorbed on graphene doping with boron: First-principles calculations
    Li, Daoyong
    Ouyang, Yu
    Li, Jianfu
    Sun, Yuanyuan
    Chen, Li
    SOLID STATE COMMUNICATIONS, 2012, 152 (05) : 422 - 425
  • [32] Cr in diamond: A first-principles study
    Benecha, E. M.
    Lombardi, E. B.
    PHYSICAL REVIEW B, 2011, 84 (23):
  • [33] First-principles studies of diamond polytypes
    Wen, Bin
    Zhao, Jijun
    Bucknum, Michael J.
    Yao, Pingkun
    Li, Tingju
    DIAMOND AND RELATED MATERIALS, 2008, 17 (03) : 356 - 364
  • [34] Magnetic property of tellurium-infiltrated Inconel 718: First-principles calculations and experimental validation
    Li, Guoying
    Liu, Zhanqiang
    Wang, Bing
    Qian, Zhao
    Kou, Zongde
    MATERIALS LETTERS, 2025, 381
  • [35] First-principles study on the effects of doping and adsorption on the electronic and magnetic properties of diamond nanothreads
    Miao, Zhenzhen
    Cao, Can
    Zhang, Bei
    Duan, Haiming
    Long, Mengqiu
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 118
  • [36] First-principles calculations on dislocations in MgO
    Kiyohara, Shin
    Tsuru, Tomohito
    Kumagai, Yu
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2024, 25 (01)
  • [37] First-principles calculations of multivacancies in germanium
    Sholihun
    Ishii, Fumiyuki
    Saito, Mineo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (01)
  • [38] The first-principles calculations on the CuI compound
    Yuece, G.
    Colakoglu, K.
    Deligoz, E.
    Ciftci, Y. O.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 674 - 674
  • [39] First-principles calculations and the thermodynamics of Cementite
    Jang, Jae Hoon
    Kim, In Gee
    Bhadeshia, H. K. D. H.
    THERMEC 2009, PTS 1-4, 2010, 638-642 : 3319 - 3324
  • [40] First-principles calculations of tunneling conductance
    Ishida, H
    Wortmann, D
    Ohwaki, T
    PHYSICAL REVIEW B, 2004, 70 (08) : 085409 - 1