Electrocatalysis of Co/CoxOy nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction

被引:0
|
作者
Liu, Yong [1 ]
Chen, Yumei [1 ]
Li, Qing [1 ]
Shi, Jianchao [1 ]
Liu, Baozhong [1 ,2 ]
机构
[1] Henan Polytech Univ, Coll Chem & Chem Engn, Jiaozuo 454000, Peoples R China
[2] State Collaborat Innovat Ctr Coal Work Safety & Cl, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
Co/CoxOy nanofilms; Oxygen reduction reaction; Non-precious metal catalyst; Nitrogen doping; Structural regulation; ONE-POT SYNTHESIS; EFFICIENT; NANOPARTICLES; GRAPHENE; CATALYSTS; DESIGN; ORR;
D O I
10.1016/j.jcis.2024.09.235
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive E-onset (0.864 V) and E-1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec(-1)), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O-2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [21] Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
    E. A. Moguchikh
    K. O. Paperzh
    A. A. Alekseenko
    E. N. Gribov
    N. Yu. Tabachkova
    N. V. Maltseva
    A. G. Tkachev
    E. A. Neskoromnaya
    A. V. Melezhik
    V. V. Butova
    O. I. Safronenko
    V. E. Guterman
    Journal of Applied Electrochemistry, 2022, 52 : 231 - 246
  • [22] Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction
    Li, Jiayuan
    Wang, Jing
    Gao, Dunfeng
    Li, Xingyun
    Miao, Shu
    Wang, Guoxiong
    Bao, Xinhe
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (09) : 2949 - 2954
  • [23] Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction
    Qian, Yingdan
    Liu, Zheng
    Zhang, Hui
    Wu, Ping
    Cai, Chenxin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) : 32875 - 32886
  • [24] Nitrogen-doped multiwalled carbon nanotubes and their electrocatalysis towards oxidation of NO
    Lv, Weixin
    Shi, Keying
    Li, Li
    Shao, Shizhuang
    MICROCHIMICA ACTA, 2010, 170 (1-2) : 91 - 98
  • [25] Nitrogen-Doped Carbon Foam: Preparation and Oxygen Reduction Reaction Performance
    Li, Jing-Han
    Song, Ya-Cheng
    Zhou, Ya-Zhou
    Cheng, Xiao-Nong
    Yang, Juan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (03) : 457 - 464
  • [26] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 20002 - 20010
  • [27] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Shenggao Wang
    Xujie Wang
    Quanrong Deng
    Yangwu Mao
    Geming Wang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 6608 - 6616
  • [28] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [29] Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction
    Wei, Wei
    Ge, Hongtao
    Huang, Linsong
    Kuang, Min
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) : 13634 - 13638
  • [30] Active sites for the oxygen reduction reaction in nitrogen-doped carbon nanofibers
    Buan, Marthe E. M.
    Cognigni, Andrea
    Walmsley, John C.
    Muthuswamy, Navaneethan
    Ronning, Magnus
    CATALYSIS TODAY, 2020, 357 : 248 - 258