Low-carbon integrated energy system scheduling considering electric vehicle demand response

被引:0
|
作者
Wang, Lunjie [1 ]
Luo, Lin [1 ]
Yu, Miao [2 ]
Pei, Xiaodeng [3 ]
机构
[1] Liaoning Petrochem Univ, Sch Informat & Control Engn, Fushun, Liaoning, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou, Zhejiang, Peoples R China
[3] Ningguo Power Supply Co, State Grid Anhui Elect Power Co Ltd, Huainan, Anhui, Peoples R China
关键词
Integrated energy system; Demand response; Electric vehicle; Carbon capture systems; Mixed-integer linear programming; BATTERY LIFETIME; AGGREGATOR; POWER;
D O I
10.1016/j.jclepro.2024.144073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under the dual-carbon context, integrating electric vehicles (EVs) into the power grid faces numerous challenges. This paper proposes an electric vehicle demand response (EVDR) mechanism and applies it to a nonlinear integrated energy system (IES) to address carbon emissions and energy efficiency issues. To further reduce carbon emissions, the model incorporates carbon capture technology and carbon penalty mechanisms. The model is transformed into a mixed-integer linear programming (MILP) problem through piecewise linearization and solved using CPLEX. Experimental results show that the integrated energy scheduling model achieves load balancing through flexible EV charging scheduling, increases carbon emission costs by 1.5%, reduces total costs by 2.55%, and significantly enhances system flexibility. Additionally, the model effectively utilizes renewable energy, with zero curtailment costs for wind and photovoltaic power, reducing reliance on traditional energy sources and minimizing waste of renewable energy. The carbon capture system significantly lowers both carbon emission costs and total costs; increasing the capture rate limit by 20% can reduce total costs by 24.29%, enhancing the system's environmental friendliness. The introduction of carbon penalty mechanisms encourages system operators to adopt more environmentally friendly production methods, promoting the transition of energy systems towards low-carbon development. The proposed scheduling model has significant theoretical and practical implications for the intelligent management of future energy systems and the progress towards carbon neutrality.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Low-carbon economic dispatch considering integrated demand response and multistep carbon trading for multi-energy microgrid
    Yilin Long
    Yong Li
    Yahui Wang
    Yijia Cao
    Lin Jiang
    Yicheng Zhou
    Youyue Deng
    Yosuke Nakanishi
    Scientific Reports, 12
  • [32] Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism
    Yang, Peihong
    Jiang, Hui
    Liu, Chunming
    Kang, Lan
    Wang, Chunling
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [33] The Multi-Objective Distributed Robust Optimization Scheduling of Integrated Energy Systems Considering Green Hydrogen Certificates and Low-Carbon Demand Response
    Yang, Yulong
    Yan, Han
    Wang, Jiaqi
    PROCESSES, 2025, 13 (03)
  • [34] Integrated Planning for Transition to Low-Carbon Distribution System With Renewable Energy Generation and Demand Response
    Zeng, Bo
    Zhang, Jianhua
    Yang, Xu
    Wang, Jianhui
    Dong, Jun
    Zhang, Yuying
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) : 1153 - 1165
  • [35] Low-carbon Economic Dispatch of Regional Integrated Energy System Based on Demand Side Response
    He X.
    Liu M.
    Li J.
    Li G.
    Zhang J.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (03): : 1140 - 1150
  • [36] Low-Carbon Planning for Buildings Considering Ladder Carbon Reward and Punishment and Integrated Demand Response
    Shang M.
    Gao H.
    He S.
    Liu J.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (06): : 926 - 940
  • [37] Optimization Scheduling of Integrated Energy System Considering Demand Response and Coupling Degree
    Lv, Huacan
    Wang, Yong
    Dong, Xuetao
    Jiang, Fan
    Wang, Chengfu
    Zhang, Zhenwei
    2021 IEEE/IAS 57TH INDUSTRIAL AND COMMERCIAL POWER SYSTEMS TECHNICAL CONFERENCE (I&CPS), 2021,
  • [38] Scheduling Strategy of Industrial Parks Integrated Energy System Considering Carbon Trading and Electric Vehicle Charging Load
    Xiao Q.
    Yang K.
    Song Z.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (04): : 1392 - 1402
  • [39] Distributed robust low-carbon optimal scheduling of an integrated energy system considering worst-case scenario probability and flexibility of supply and demand
    Wang, Pengpeng
    Song, Yunzhong
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2024, 52 (13): : 78 - 89
  • [40] Low-Carbon Economic Dispatch of Integrated Energy Systems Considering Full-Process Carbon Emission Tracking and Low Carbon Demand Response
    Zhang, Yumin
    Sun, Pengkai
    Ji, Xingquan
    Yang, Ming
    Ye, Pingfeng
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5417 - 5431