Ionic conductivity and hydrogen crossover for IT-PEMFCs: Influence of pressure, temperature, relative humidity and reinforcement

被引:4
|
作者
Butori M. [1 ]
Eriksson B. [1 ]
Nikolić N. [1 ]
Lagergren C. [1 ]
Lindbergh G. [1 ]
Wreland Lindström R. [1 ]
机构
[1] Dept. of Chemical Engineering / Applied Electrochemistry, KTH Royal Institute of Technology, Stockholm
关键词
H[!sub]2[!/sub] crossover; Intermediate temperature; Mechanical reinforcement; Membrane conductivity; Membrane permeability; Proton exchange membrane fuel cell;
D O I
10.1016/j.ijhydene.2024.06.286
中图分类号
学科分类号
摘要
Improved knowledge on Proton Exchange Membrane Fuel Cell (PEMFC) behaviour in the Intermediate Temperature (IT: 80–120 °C) is needed. Here, ionic conductivity and H2 permeability are analysed under H2/N2 using electrochemical impedance spectroscopy, linear sweep voltammetry for three catalyst-coated membranes (CCMs): Nafion HP (reinforced), Nafion 211 (non-reinforced) and a reinforced commercial membrane (RCM, membrane thickness 13 μm). Multiple relative humidity (RH) levels and pressure configurations are analysed at IT. Results show that ionic conductivity and H2 permeability increase with temperature and RH. However, lower crossover is measured above 100 °C and wet conditions due to low H2 partial pressure. The highest crossover is measured with an overpressure on the H2 side which, especially for RCM, suggests possible convection. The membrane reinforcement might reduce the permeability and it decreases the conductivity. Mass spectrometry confirmed that sprayed CCMs suffer from higher crossover than pristine membranes, although the membrane thickness is unchanged. © 2024 The Authors
引用
收藏
页码:1158 / 1170
相关论文
共 50 条
  • [21] Effect of relative humidity and temperature on the performance of an electrochemical hydrogen compressor
    Pineda-Delgado, J. L.
    Chavez-Ramirez, A. U.
    Gutierrez, Cynthia K.
    Rivas, S.
    Marisela, Cruz-Ramirez
    de Jesus Hernandez-Cortes, Ramiro
    Menchaca-Rivera, J. A.
    Perez-Robles, F.
    APPLIED ENERGY, 2022, 311
  • [22] Factors affecting the stability of Nafion conductivity at high temperature and relative humidity
    Casciola, Manio
    Alberti, Giulio
    Sganappa, Manolo
    Narducci, Riccardo
    DESALINATION, 2006, 200 (1-3) : 639 - 641
  • [23] Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity
    Matos, Bruno R.
    Goulart, Cleverson A.
    Santiago, Elisabete I.
    Muccillo, R.
    Fonseca, Fabio C.
    APPLIED PHYSICS LETTERS, 2014, 104 (09)
  • [24] A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity
    DeHennis, AD
    Wise, KD
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (01) : 12 - 22
  • [25] PRESSURE AND TEMPERATURE DEPENDENCES OF THE IONIC-CONDUCTIVITY OF CSCL
    SAMARA, GA
    PHYSICAL REVIEW B, 1980, 22 (12): : 6476 - 6479
  • [26] DONOR, TEMPERATURE, AND PRESSURE DEPENDENCE OF IONIC CONDUCTIVITY IN IODINE
    LUDWIG, J
    KOMMANDEUR, J
    JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (05): : 2302 - +
  • [27] INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON RESPONSE OF WHITE ASH TO OZONE
    WILHOUR, RG
    PHYTOPATHOLOGY, 1970, 60 (04) : 579 - &
  • [28] The influence of loading, temperature and relative humidity on adhesives for canvas lining
    Poulis, J. A.
    Seymour, K.
    Mosleh, Y.
    INTERNATIONAL CONFERENCE FLORENCE HERI-TECH: THE FUTURE OF HERITAGE SCIENCE AND TECHNOLOGIES, 2020, 949
  • [29] Gas permeation in perflurosulphonated membranes: Influence of temperature and relative humidity
    Baschetti, M. Giacinti
    Minelli, M.
    Catalano, J.
    Sarti, G. C.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 837 - 839
  • [30] Gas permeation in perflurosulfonated membranes: Influence of temperature and relative humidity
    Baschetti, Marco Giacinti
    Minelli, Matteo
    Catalano, Jacopo
    Sarti, Giulio C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11973 - 11982