Combining semantically-effective and geometric crossover operators for genetic programming

被引:0
|
作者
机构
[1] Pawlak, Tomasz P.
来源
Pawlak, Tomasz P. (tpawlak@cs.put.poznan.pl) | 1600年 / Springer Verlag卷 / 8672期
关键词
Genetic programming - Geometry - Genetic algorithms;
D O I
10.1007/978-3-319-10762-2_45
中图分类号
学科分类号
摘要
We propose a way to combine two distinct general patterns for designing semantic crossover operators for genetic programming: geometric semantic approach and semantically-effective approach. In the experimental part we show the synergistic effects of combining these two approaches, which we explain by a major fraction of crossover acts performed by geometric semantic crossover operators being semantically ineffective. The results of the combined approach show significant improvement of performance and high resistance to a premature convergence. © Springer International Publishing Switzerland 2014.
引用
收藏
相关论文
共 50 条
  • [41] Cooperative crossover and mutation operators in genetic algorithms
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 772 - 772
  • [42] Performance analysis for crossover operators of genetic algorithm
    Okayama Univ of Science, Okayama, Japan
    Syst Comput Jpn, 2 (20-30):
  • [43] Certified Genetic Algorithms:: Crossover operators for permutations
    Aguado, F.
    Doncel, J. L.
    Molinelli, J. M.
    Perez, G.
    Vidal, C.
    Vieites, A.
    COMPUTER AIDED SYSTEMS THEORY- EUROCAST 2007, 2007, 4739 : 282 - +
  • [44] Depth-dependent crossover for genetic programming
    Ito, T
    Iba, H
    Sato, S
    1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 775 - 780
  • [45] Cartesian Genetic Programming as an Optimizer of Programs Evolved with Geometric Semantic Genetic Programming
    Koncal, Ondrej
    Sekanina, Lukas
    GENETIC PROGRAMMING, EUROGP 2019, 2019, 11451 : 98 - 113
  • [46] Grammar based crossover operator in genetic programming
    Manrique, D
    Márquez, F
    Ríos, J
    Rodríguez-Patón, A
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS, 2005, 3562 : 252 - 261
  • [47] On the roles of semantic locality of crossover in genetic programming
    Nguyen Quang Uy
    Nguyen Xuan Hoai
    O'Neill, Michael
    McKay, R. I.
    Dao Ngoc Phong
    INFORMATION SCIENCES, 2013, 235 : 195 - 213
  • [48] Maximum Homologous Crossover for Linear Genetic Programming
    Platel, MD
    Clergue, M
    Collard, P
    GENETIC PROGRAMMING, PROCEEDINGS, 2003, 2610 : 194 - 203
  • [49] A Rigorous Evaluation of Crossover and Mutation in Genetic Programming
    White, David R.
    Poulding, Simon
    GENETIC PROGRAMMING, 2009, 5481 : 220 - 231
  • [50] Matching Subtrees in Genetic Programming Crossover Operator
    Slapak, Martin
    Neruda, Roman
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 208 - 213