Combining semantically-effective and geometric crossover operators for genetic programming

被引:0
|
作者
机构
[1] Pawlak, Tomasz P.
来源
Pawlak, Tomasz P. (tpawlak@cs.put.poznan.pl) | 1600年 / Springer Verlag卷 / 8672期
关键词
Genetic programming - Geometry - Genetic algorithms;
D O I
10.1007/978-3-319-10762-2_45
中图分类号
学科分类号
摘要
We propose a way to combine two distinct general patterns for designing semantic crossover operators for genetic programming: geometric semantic approach and semantically-effective approach. In the experimental part we show the synergistic effects of combining these two approaches, which we explain by a major fraction of crossover acts performed by geometric semantic crossover operators being semantically ineffective. The results of the combined approach show significant improvement of performance and high resistance to a premature convergence. © Springer International Publishing Switzerland 2014.
引用
收藏
相关论文
共 50 条
  • [1] Combining Semantically-Effective and Geometric Crossover Operators for Genetic Programming
    Pawlak, Tomasz P.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 454 - 464
  • [2] Semantically Driven Crossover in Genetic Programming
    Beadle, Lawrence
    Johnson, Colin G.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 111 - 116
  • [3] A STUDY OF CROSSOVER OPERATORS IN GENETIC PROGRAMMING
    SPEARS, WM
    ANAND, V
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 542 : 409 - 418
  • [4] New Geometric Semantic Operators in Genetic Programming: Perpendicular Crossover and Random Segment Mutation
    Chen, Qi
    Zhang, Mengjie
    Xue, Bing
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 223 - 224
  • [5] Subtree semantic geometric crossover for genetic programming
    Quang Uy Nguyen
    Tuan Anh Pham
    Xuan Hoai Nguyen
    McDermott, James
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2016, 17 (01) : 25 - 53
  • [6] Subtree semantic geometric crossover for genetic programming
    Quang Uy Nguyen
    Tuan Anh Pham
    Xuan Hoai Nguyen
    James McDermott
    Genetic Programming and Evolvable Machines, 2016, 17 : 25 - 53
  • [7] Improved Crossover Operators for Genetic Programming for Program Repair
    Oliveira, Vinicius Paulo L.
    Souza, Eduardo F. D.
    Le Goues, Claire
    Camilo-Junior, Celso G.
    SEARCH BASED SOFTWARE ENGINEERING, SSBSE 2016, 2016, 9962 : 112 - 127
  • [8] On the Success Rate of Crossover Operators for Genetic Programming with Offspring Selection
    Kronberger, Gabriel
    Winkler, Stephan
    Affenzeller, Michael
    Beham, Andreas
    Wagner, Stefan
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2009, 2009, 5717 : 793 - 800
  • [9] Crossover and mutation operators for grammar-guided genetic programming
    Jorge Couchet
    Daniel Manrique
    Juan Ríos
    Alfonso Rodríguez-Patón
    Soft Computing, 2007, 11 : 943 - 955
  • [10] Crossover and mutation operators for grammar-guided genetic programming
    Couchet, Jorge
    Manrique, Daniel
    Rios, Juan
    Rodriguez-Paton, Alfonso
    SOFT COMPUTING, 2007, 11 (10) : 943 - 955