Matching-Based Hybrid Service Trading for Task Assignment Over Dynamic Mobile Crowdsensing Networks

被引:1
|
作者
Qi, Houyi [1 ]
Liwang, Minghui [1 ,2 ,3 ]
Hosseinalipour, Seyyedali [4 ]
Xia, Xiaoyu [5 ]
Cheng, Zhipeng [6 ]
Wang, Xianbin [7 ]
Jiao, Zhenzhen [7 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361005, Fujian, Peoples R China
[2] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
[3] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 200092, Peoples R China
[4] Univ Buffalo SUNY, Dept Elect Engn, Bldg, New York, NY 10120 USA
[5] RMIT Univ, Sch Comp Technol, Melbourne, Vic 3000, Australia
[6] Soochow Univ, Sch Future Sci & Engn, Suzhou 215006, Jiangsu, Peoples R China
[7] Western Univ, Dept Elect & Comp Engn, London, ON N6A 3K7, Canada
基金
中国国家自然科学基金;
关键词
Task analysis; Public transportation; Companies; Energy consumption; Crowdsensing; Recruitment; Uncertainty; Futures and spot trading; matching theory; mobile crowdsensing; overbooking; risk analysis; INCENTIVE MECHANISM; OVERBOOKING; ALLOCATION;
D O I
10.1109/TSC.2023.3333832
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By opportunistically engaging mobile users (workers), mobile crowdsensing (MCS) networks have emerged as important approach to facilitate sharing of sensed/gathered data of heterogeneous mobile devices. To assign tasks among workers and ensure low overheads, we introduce a series of stable matching mechanisms, which are integrated into a novel hybrid service trading paradigm consisting of futures trading and spot trading modes, to ensure seamless MCS service provisioning. In futures trading, we determine a set of long-term workers for each task through an overbooking-enabled in-advance many-to-many matching (OIA3M) mechanism, while characterizing the associated risks under statistical analysis. In spot trading, we investigate the impact of fluctuations in long-term workers' resources on the violation of service quality requirements of tasks, and formalize a spot trading mode for tasks with violated service quality requirements under practical budget constraints, where the task-worker mapping is carried out via onsite many-to-many matching (O3M) and onsite many-to-one matching (OMOM). We theoretically show that our proposed matching mechanisms satisfy stability, individual rationality, fairness, and computational efficiency. Comprehensive evaluations confirm the satisfaction of these properties in practical network settings and demonstrate our commendable performance in terms of service quality, running time, and decision-making overheads, e.g., delay and energy consumption.
引用
收藏
页码:2597 / 2612
页数:16
相关论文
共 50 条
  • [1] Hybrid User-Based Task Assignment for Mobile Crowdsensing: Problem and Algorithm
    Liu, Kun
    Peng, Shuo
    Gong, Wei
    Zhang, Baoxian
    Li, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19589 - 19601
  • [2] Online Task Assignment for Crowdsensing in Predictable Mobile Social Networks
    Xiao, Mingjun
    Wu, Jie
    Huang, Liusheng
    Cheng, Ruhong
    Wang, Yunsheng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2017, 16 (08) : 2306 - 2320
  • [3] Multi-Task Assignment for CrowdSensing in Mobile Social Networks
    Xiao, Mingjun
    Wu, Jie
    Huang, Liusheng
    Wang, Yunsheng
    Liu, Cong
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), 2015,
  • [4] Quality Inference Based Task Assignment in Mobile Crowdsensing
    Gao, Xiaofeng
    Huang, Haowei
    Liu, Chenlin
    Wu, Fan
    Chen, Guihai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (10) : 3410 - 3423
  • [5] Cluster based Online Task Assignment for Mobile Crowdsensing
    Yang, Haodong
    Peng, Shuo
    Yao, Zheng
    Zhang, Baoxian
    Lit, Cheng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5280 - 5285
  • [6] Dynamic Task Assignment Framework for Mobile Crowdsensing with Deep Reinforcement Learning
    Fu Y.
    Qi K.
    Shi Y.
    Shen Y.
    Xu L.
    Zhang X.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [7] QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing
    Liu, Chenlin
    Gao, Xiaofeng
    Wu, Fan
    Chen, Guihai
    SERVICE-ORIENTED COMPUTING (ICSOC 2018), 2018, 11236 : 363 - 370
  • [8] Social Welfare-Based Task Assignment in Mobile Crowdsensing
    Kang, Zheng
    Liu, Hui
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (03)
  • [9] HSM-SMCS: Task Assignment Based on Hybrid Sensing Modes in Sparse Mobile Crowdsensing
    Wei, Xiaohui
    Li, Zijian
    Ren, Chenghao
    Guo, Tao
    Gao, Shang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (05) : 4034 - 4048
  • [10] A Multiplatform-Cooperation-Based Task Assignment Mechanism for Mobile Crowdsensing
    Peng, Shuo
    Zhang, Baoxian
    Yan, Yan
    Li, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (19) : 16881 - 16894