Controlled deposition of trimetallic Fe-Ni-V oxides on nickel foam as high-performance electrocatalysts for oxygen evolution reaction

被引:2
|
作者
Ehsan, Muhammad Ali [1 ]
Batool, Rashida [2 ]
Hakeem, Abbas Saeed [1 ]
Ali, Sameer
Nazar, Muhammad Faizan [2 ]
Ullah, Zaka [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Box 5040, Dhahran 31261, Saudi Arabia
[2] Univ Educ, Dept Chem, Div Sci & Technol, Lahore 54770, Pakistan
[3] Univ Educ, Dept Phys, Div Sci & Technol, Lahore 54770, Pakistan
关键词
3d-transition metals; Oxygen evolution reaction; Aerosol-assisted CVD; Composite oxide; Electrocatalyst; Nickel foam; WATER OXIDATION; EFFICIENT; HYDROGEN; ENERGY; REDUCTION;
D O I
10.1016/j.ijhydene.2024.12.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the kinetics of the oxygen evolution reaction (OER) is imperative for the advancement of water splitting technology. A promising and pressing approach involves the exploration of effective and durable electrocatalysts derived from 3d transition metals. Herein, we present the fabrication of trimetallic FeNiVOx composite catalysts on nickel foam using aerosol-assisted chemical vapor deposition approach for investigating the OER in 1 M KOH solution. The catalysts were deposited for 1, 2, and 3 h to optimize important parameters such as mass loading, morphology, and active sites, with the aim of achieving superior OER activity. The catalyst deposited for 3 h needed minimum overpotentials of 370 mV to attain high oxidation current density of 1 A cm- 2 . This outstanding catalytic performance can be attributed to the effective modulation of the electronic structure among Fe, Ni, and V centers, thereby enhancing the intrinsic active sites. The strong connection between the spherical features and the highly conductive nickel foam contributes to the excellent stability of FeNiVOx, enabling it to maintain its OER performance for up to 40 h. Furthermore, the designed catalysts may serve as promising alternatives to noble metal catalysts for the construction of affordable and clean energy water splitting devices.
引用
收藏
页码:772 / 782
页数:11
相关论文
共 50 条
  • [41] Sr, Fe Co-doped Perovskite Oxides With High Performance for Oxygen Evolution Reaction
    Guo, Qiang
    Li, Xiang
    Wei, Haifei
    Liu, Yi
    Li, Lanlan
    Yang, Xiaojing
    Zhang, Xinghua
    Liu, Hui
    Lu, Zunming
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [42] Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction
    Yu, Chen
    Xu, Fei
    Luo, Lin
    Abbo, Hanna S.
    Titinchi, Salam J. J.
    Shen, Pei Kang
    Tsiakaras, Panagiotis
    Yin, Shibin
    ELECTROCHIMICA ACTA, 2019, 317 : 191 - 198
  • [43] Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction
    Yan, Kai-Li
    Shang, Xiao
    Li, Zhen
    Dong, Bin
    Chi, Jing-Qi
    Liu, Yan-Ru
    Gao, Wen-Kun
    Chai, Yong-Ming
    Liu, Chen-Guang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (27) : 17129 - 17135
  • [44] Mesoporous FeMoV Oxide Nanosheets Supported on Nickel Foam as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction
    Zhou, Xingwei
    Li, Jianchen
    Ma, Haibin
    Qu, Yanbin
    Cui, Yuhuan
    Wang, Zhili
    Jiang, Qing
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14059 - 14067
  • [45] CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction
    Liu, Zhibin
    Yu, Chang
    Han, Xiaotong
    Yang, Juan
    Zhao, Changtai
    Huang, Huawei
    Qiu, Jieshan
    CHEMELECTROCHEM, 2016, 3 (06): : 906 - 912
  • [46] NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction
    Wang, Ze
    Zhou, Qianyu
    Zhu, Yanni
    Du, Yangfan
    Yang, Weichun
    Chen, Yuanfu
    Li, Yong
    Wang, Shifeng
    NANOMATERIALS, 2022, 12 (13)
  • [47] Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as High-Performance Electrocatalysts for the Oxygen Evolution Reaction
    Sahoo, Pathik
    Tan, Jing-Bo
    Zhang, Zhi-Ming
    Singh, Shiva Kumar
    Lu, Tong-Bu
    CHEMCATCHEM, 2018, 10 (05) : 1075 - 1083
  • [48] Fe-doped Nickel Carbonate Hydroxide Array Electrocatalysts for Enhanced Oxygen Evolution Reaction
    Tian, Zhangmin
    Peng, Bin
    Yang, Jianing
    Shi, Yingying
    Ma, Chenxu
    Liu, Guiying
    Zheng, Wenjun
    CHEMISTRYSELECT, 2022, 7 (27):
  • [49] High performance binder-free Fe-Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction (vol 4, pg 6311, 2020)
    Shin, Cheol-Hwan
    Wei, Yi
    Park, Gisang
    Kang, Joonhee
    Yu, Jong-Sung
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (04): : 1222 - 1222
  • [50] Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media
    Hu, Xiaoyan
    Tian, Xuemei
    Lin, Ying-Wu
    Wang, Zhonghua
    RSC ADVANCES, 2019, 9 (54) : 31563 - 31571