River sand is essential for concrete but its production depletes 50 billion tons of resources annually causing scarcity and environmental issues. Desert sand (DS) covering 6 million square kilometers could help address this scarcity but has inferior properties. This study develops high-strength desert sand concrete (DSC) using 100 % DS through compression casting. Nine concrete mixes were prepared with varying DS replacement levels (0, 50, 100 %) and design strengths (30, 50, 70 MPa). Compression casting improved DSC's compressive and split tensile strength by up to 93 % and 54 % respectively compared to traditional concrete. It also reduced water absorption and voids by up to 41 % and 34 % and enhanced chloride and carbonation resistance by up to 64 % and 100 %. XRD, DSC-TG, and SEM analyses also confirm these results. Compression casting of DSC cut costs, CO2 emissions, and energy consumption by up to 57 %, 43 %, and 42 % respectively. This innovative DSC offers superior engineering, environmental, and economic benefits as a sustainable alternative to traditional concrete.