A review on the reliability of knowledge graph: from a knowledge representation learning perspective

被引:0
|
作者
Yang, Yunxiao [1 ]
Chen, Jianting [1 ]
Xiang, Yang [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Caoan Highway, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph; Knowledge reliability; Knowledge representation learning; Uncertainty measurement; Error detection; LARGE-SCALE; LINK PREDICTION; BASE;
D O I
10.1007/s11280-024-01316-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graphs manage and organize data and information in a structured form, which can provide effective support for various applications and services. Only reliable knowledge can provide valuable information. However, most existing knowledge graphs encounter the problem of partially unreliable knowledge. With the progress of the Internet and information technology, how to ensure the reliability of knowledge graphs has become a significant research topic. We first clarify the concept of knowledge graph reliability based on the attributes of facts in knowledge graphs. It includes two parts: the correctness and uncertainty of knowledge. We then analyze their corresponding research tasks. The research of knowledge correctness aims to handle the erroneous triples in knowledge graphs, whereas the research of knowledge uncertainty assesses the ambiguous and probabilistic triples. Knowledge representation learning, a neural technique to process symbolic knowledge, is the promising approach in the research of knowledge graph reliability. Therefore, we summarize the related studies on knowledge correctness and uncertainty based on the framework of knowledge representation learning, which includes four categories: score function modification, representation vector optimization, loss function adjustment, and textual information integration. Additionally, we present an analysis of the widely used benchmarks, and lastly conclude with a discussion on the potential trends and future research directions in the reliability of knowledge graph.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Semantic Communication Enhanced by Knowledge Graph Representation Learning
    Hello, Nour
    Di Lorenzo, Paolo
    Strinati, Emilio Calvanese
    2024 IEEE 25TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, SPAWC 2024, 2024, : 876 - 880
  • [22] A lightweight hierarchical graph convolutional model for knowledge graph representation learning
    Zhang, Jinglin
    Shen, Bo
    APPLIED INTELLIGENCE, 2024, 54 (21) : 10695 - 10708
  • [23] Complex Representation Learning with Graph Convolutional Networks for Knowledge Graph Alignment
    Sakong, Darnbi
    Huynh, Thanh Trung
    Nguyen, Thanh Tam
    Nguyen, Thanh Toan
    Jo, Jun
    Nguyen, Quoc Viet Hung
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [24] Investigating Domain Knowledge Graph Knowledge Reasoning and Assessing Quality Using Knowledge Representation Learning and Knowledge Reasoning Algorithms
    Cao, Ying
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2025, 24 (01)
  • [25] A Novel Logical Query Representation Learning Model on Knowledge Graph for Interpretable Knowledge Reasoning
    Wang, Yashen
    Zhang, Huanhuan
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 819 - 824
  • [26] Knowledge graph representation and reasoning
    Cambria, Erik
    Ji, Shaoxiong
    Pan, Shirui
    Yu, Philip S.
    Neurocomputing, 2021, 461 : 494 - 496
  • [27] Knowledge representation and graph transformation
    Schuster, S
    THEORY AND APPLICATION TO GRAPH TRANSFORMATIONS, 2000, 1764 : 228 - 237
  • [28] Knowledge graph representation and reasoning
    Cambria, Erik
    Ji, Shaoxiong
    Pan, Shirui
    Yu, Philip S.
    NEUROCOMPUTING, 2021, 461 : 494 - 496
  • [29] VISTA: Visual-Textual Knowledge Graph Representation Learning
    Lee, Jaejun
    Chung, Chanyoung
    Lee, Hochang
    Jo, Sungho
    Whang, Joyce Jiyoung
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 7314 - 7328
  • [30] Graph representation learning via simple jumping knowledge networks
    Yang, Fei
    Zhang, Huyin
    Tao, Shiming
    Hao, Sheng
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11324 - 11342