Nonlinear parameters identification of multi-degree-of-freedom systems using sensitivity analysis

被引:0
|
作者
School of Transportation Engineering, Shijiazhuang Railway Institution, Shijiazhuang 050043, China [1 ]
不详 [2 ]
机构
来源
Zhendong Ceshi Yu Zhenduan | 2006年 / 4卷 / 291-295期
关键词
9;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] PROPOSITION OF AN IMPROVED NONPARAMETRIC IDENTIFICATION TECHNIQUE FOR NONLINEAR MULTI-DEGREE-OF-FREEDOM VIBRATORY-SYSTEMS
    YASUDA, K
    YE, JR
    JSME INTERNATIONAL JOURNAL SERIES C-DYNAMICS CONTROL ROBOTICS DESIGN AND MANUFACTURING, 1993, 36 (03): : 288 - 295
  • [22] Modified restoring force surface method for clearance identification in nonlinear multi-degree-of-freedom systems
    Liu J.
    Li B.
    Han L.
    Quan S.
    He A.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2016, 52 (14): : 1 - 7
  • [23] Forced vibration analysis of multi-degree-of-freedom nonlinear systems with the extended Galerkin method
    Shi, Baiyang
    Yang, Jian
    Wang, Ji
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (04) : 794 - 802
  • [24] Forecasting bifurcations of multi-degree-of-freedom nonlinear systems with parametric resonance
    Chen, Shiyang
    Epureanu, Bogdan
    NONLINEAR DYNAMICS, 2018, 93 (01) : 63 - 78
  • [25] DYNAMIC ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEMS USING PHASING MATRICES.
    Bielawa, Richard L.
    1974,
  • [26] The probabilistic solutions to nonlinear random vibrations of multi-degree-of-freedom systems
    Er, GK
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (02): : 355 - 359
  • [27] Probabilistic solutions to nonlinear random vibrations of multi-degree-of-freedom systems
    Er, G.-K.
    Journal of Applied Mechanics, Transactions ASME, 2000, 67 (02): : 355 - 359
  • [28] Nonlinear substructuring control for parameter changes in multi-degree-of-freedom systems
    Enokida, Ryuta
    Kajiwara, Koichi
    JOURNAL OF SOUND AND VIBRATION, 2017, 407 : 63 - 81
  • [29] Forecasting bifurcations of multi-degree-of-freedom nonlinear systems with parametric resonance
    Shiyang Chen
    Bogdan Epureanu
    Nonlinear Dynamics, 2018, 93 : 63 - 78
  • [30] Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems
    Mei, Shu-Li
    Du, Cheng-Jin
    Zhang, Sen-Wen
    CHAOS SOLITONS & FRACTALS, 2008, 35 (03) : 536 - 542