Multiresolution Hypergraph Neural Network for Intelligent Fault Diagnosis

被引:0
|
作者
Tsinghua University, Institute of Nuclear and New Energy Technology, Beijing [1 ]
100084, China
不详 [2 ]
100190, China
不详 [3 ]
100049, China
机构
来源
关键词
Complex networks - Deep learning - Fault detection - Graph neural networks - Learning algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Intelligent fault diagnosis has made significant progress, thanks to machine learning, particularly deep-learning algorithms. However, most machine-learning algorithms treat samples as independent and ignore the correlations between samples that contain valuable information for creating discriminative features. In recent years, graph neural networks have increased diagnostic performance by capturing the correlation between samples according to establishing the inherent structure of data, but they also suffer from two shortcomings. First, a simple graph only represents pairwise relationships of samples and cannot depict complex higher-order structures. Second, the generated graph structure is insufficient to characterize the data without an explicit structure. To address the above two issues, this article proposes a multiresolution hypergraph neural network, a novel algorithm that can discover higher-order complex relationships between samples, and mine the structure hidden in data by establishing and fusing hypergraph structures at multiple resolutions. Experiments are conducted on three datasets to demonstrate the effectiveness of the proposed algorithm. © 1963-2012 IEEE.
引用
收藏
相关论文
共 50 条
  • [21] Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network
    Zhang, Bo
    Zhou, Caicai
    Li, Wei
    Ji, Shengfei
    Li, Hengrui
    Tong, Zhe
    Ng, See-Kiong
    MATHEMATICS, 2022, 10 (21)
  • [22] Intelligent Fault Diagnosis Method Based on Neural Network Compression for Rolling Bearings
    Wang, Xinren
    Hu, Dongming
    Fan, Xueqi
    Liu, Huiyi
    Yang, Chenbin
    SYMMETRY-BASEL, 2024, 16 (11):
  • [23] An Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network
    Li, Chunhui
    Tang, Youfu
    Lei, Na
    Wang, Xu
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6160 - 6175
  • [24] Intelligent condition monitoring and fault diagnosis of a gearbox based on Artificial Neural Network
    Yang, Shu Lian
    Li Wenhai
    Zhen Hua
    Xiang Fang
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 560 - +
  • [25] Intelligent fault diagnosis of bearings based on feature model and Alexnet neural network
    Shi, Xiaoyu
    Cheng, Yuhua
    Zhang, Bo
    Zhang, Haonan
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [26] A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network
    Wang, Zhijian
    Zheng, Likang
    Du, Wenhua
    Cai, Wenan
    Zhou, Jie
    Wang, Jingtai
    Han, Xiaofeng
    He, Gaofeng
    COMPLEXITY, 2019, 2019
  • [27] Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
    Chen, Zhuyun
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 339 - 349
  • [28] Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network
    Chen, Zhuyun
    Zhong, Qi
    Huang, Ruyi
    Liao, Yixiao
    Li, Jipu
    Li, Weihua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (21): : 96 - 105
  • [29] A Deep Neural Network Based Robust Intelligent Strategy for Microgrid Fault Diagnosis
    Bhuiyan, Erphan A.
    Fahim, Shahriar Rahman
    Sarker, Subrata K.
    Das, Sajal K.
    Islam, Md Rabiul
    Muttaqi, Kashem
    2021 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2021,
  • [30] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413