Quasi-interpolating splines: Examples and applications

被引:0
|
作者
Sablonnière, Paul [1 ]
机构
[1] Centre de Mathématiques, INSA de Rennes, 20 avenue des Buttes de Coë,smes, Rennes cédex,35043, France
关键词
58;
D O I
10.1051/proc:072017
中图分类号
学科分类号
摘要
引用
收藏
页码:195 / 207
相关论文
共 50 条
  • [31] Quasi-interpolating bivariate dual v2-subdivision using 1D stencils
    Fang, Lincong
    Han, Bin
    Shen, Yi
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 98
  • [32] Numerical solution of nonlinear Fredholm-Hammerstein integral equations with logarithmic kernel by spline quasi-interpolating projectors
    Aimi, A.
    Leoni, M. A.
    Remogna, S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 223 : 183 - 194
  • [33] Comonotone adaptive interpolating splines
    Oja, P
    BIT, 2002, 42 (04): : 842 - 855
  • [34] Comonotone Adaptive Interpolating Splines
    Peeter Oja
    BIT Numerical Mathematics, 2002, 42 : 842 - 855
  • [35] Convergence of Quartic Interpolating Splines
    Yu. S. Volkov
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 196 - 202
  • [36] Approximation by interpolating variational splines
    Kouibia, A.
    Pasadas, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 342 - 349
  • [37] ON INTERPOLATING MULTIVARIATE RATIONAL SPLINES
    WANG, RH
    TAN, JQ
    APPLIED NUMERICAL MATHEMATICS, 1993, 12 (04) : 357 - 372
  • [38] INTERPOLATING SPLINES AS LIMITS OF POLYNOMIALS
    SCHOENBERG, IJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 52-3 (JUL) : 617 - 628
  • [39] PERIODIC INTERPOLATING SPLINES AND THEIR LIMITS
    CAVARETTA, AS
    NEWMAN, DJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1978, 81 (04): : 515 - 526
  • [40] Convergence of Quartic Interpolating Splines
    Volkov, Yu. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 308 (SUPPL 1) : S196 - S202