Federated Deep Reinforcement Learning for Prediction-Based Network Slice Mobility in 6G Mobile Networks

被引:3
|
作者
Ming, Zhao [1 ]
Yu, Hao [2 ]
Taleb, Tarik [3 ]
机构
[1] Univ Oulu, Ctr Wireless Commun CWC, Oulu 90570, Finland
[2] ICTFICIAL Oy, Espoo 02130, Finland
[3] Ruhr Univ Bochum, D-44801 Bochum, Germany
关键词
Resource management; Decision making; 6G mobile communication; Dynamic scheduling; Training; Quality of service; Long short term memory; Prediction-based network slice mobility; incomplete observation; deep reinforcement learning; ENERGY; MANAGEMENT;
D O I
10.1109/TMC.2024.3404125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network slices are generally coupled with services and face service continuity/unavailability concerns due to the high mobility and dynamic requests from users. Network slice mobility (NSM), which considers user mobility, service migration, and resource allocation from a holistic view, is witnessed as a key technology in enabling network slices to respond quickly to service degradation. Existing studies on NSM either ignored the trigger detection before NSM decision-making or didn't consider the prediction of future system information to improve the NSM performance, and the training of deep reinforcement learning (DRL) agents also faces challenges with incomplete observations. To cope with these challenges, we consider that network slices migrate periodically and utilize the prediction of system information to assist NSM decision-making. The periodical NSM problem is further transformed into a Markov decision process, and we creatively propose a prediction-based federated DRL framework to solve it. Particularly, the learning processes of the prediction model and DRL agents are performed in a federated learning paradigm. Based on extensive experiments, simulation results demonstrate that the proposed scheme outperforms the considered baseline schemes in improving long-term profit, reducing communication overhead, and saving transmission time.
引用
收藏
页码:11937 / 11953
页数:17
相关论文
共 50 条
  • [41] Resource Allocation in Mobility-Aware Federated Learning Networks: A Deep Reinforcement Learning Approach
    Nguyen, Huy T.
    Luong, Nguyen Cong
    Zhao, Jun
    Yuen, Chau
    Niyato, Dusit
    2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [42] TOWARD ENERGY-EFFICIENT DISTRIBUTED FEDERATED LEARNING FOR 6G NETWORKS
    Khowaja, Sunder Ali
    Dev, Kapal
    Khowaja, Parus
    Bellavista, Paolo
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (06) : 34 - 40
  • [43] Designing Robust 6G Networks with Bimodal Distribution for Decentralized Federated Learning
    Wang, Xu
    Chen, Yuanzhu
    Dobre, Octavia A.
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [44] Hybrid NOMA for Latency Minimization in Wireless Federated Learning for 6G Networks
    Kavitha, Pillappan
    Kavitha, Kamatchi
    RADIOENGINEERING, 2023, 32 (04) : 594 - 602
  • [45] Seamless and Intelligent Resource Allocation in 6G Maritime Networks Framework via Deep Reinforcement Learning
    Hassan, Sheikh Salman
    Park, Seong-Bae
    Huh, Eui-Nam
    Hong, Choong Seon
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 505 - 510
  • [46] Slice Reconfiguration Based on Demand Prediction with Dueling Deep Reinforcement Learning
    Guan, Wanqing
    Zhang, Haijun
    Leung, Victor C. M.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [47] Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G
    Mekrache, Abdelkader
    Bradai, Abbas
    Moulay, Emmanuel
    Dawaliby, Samir
    VEHICULAR COMMUNICATIONS, 2022, 33
  • [48] Federated Reinforcement Learning-Based Resource Allocation in D2D-Enabled 6G
    Guo, Qi
    Tang, Fengxiao
    Kato, Nei
    IEEE NETWORK, 2023, 37 (05): : 89 - 95
  • [49] Fast Best Beam Prediction and Overhead Reduction for 6G Networks: A Deep Learning Approach
    Jalali, Jalal
    Roa, Juan
    Song, Yifei
    Zhao, Renjian
    Sheen, Baoling
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [50] Hybrid Multi-Agent Deep Reinforcement Learning for Active-IRS-Based Rate Maximization Over 6G UAV Mobile Wireless Networks
    Yi, Shuming
    Wang, Fei
    Zhang, Xi
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,