Learning novel object parts model for object categorization

被引:2
|
作者
Soltanpour S. [1 ]
Ebrahimnezhad H. [1 ]
机构
[1] Computer Vision Research Lab., Electrical Engineering Faculty, Sahand University of Technology of Tabriz, Tabriz
关键词
ANFIS; Grammar; MHMM; Object categorization; Parts detection; Structural context;
D O I
10.1109/ISTEL.2010.5734131
中图分类号
学科分类号
摘要
We present a new method to learn the model based on object parts extraction and grammar which can be applied to classification and recognition. Our approach is invariant to the scale and rotation of the objects. We use Structural Context feature to detect object parts. It is done comparing SC histograms of the model and image. We extract oriented triplets from centers of detected parts. We define grammar for these parts using normalize distances and angles between them. We propose and compare two alternative implementations using different classifiers: Hidden Markov Model with mixture of Gaussian outputs (MHMM) and Adaptive Neuro-Fuzzy Inference system (ANFIS) to learn this grammar and estimate parameters of the model for each object class. The proposed method is computationally efficient and it is invariant to scale and rotation. Experimental results demonstrate the privileged performance of the proposed approach against other methods. © 2010 IEEE.
引用
收藏
页码:796 / 800
页数:4
相关论文
共 50 条
  • [41] Beyond HOG: Learning Local Parts for Object Detection
    Huang, Chenjie
    Qin, Zheng
    Xu, Kaiping
    Wang, Guolong
    Xu, Tao
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 285 - 295
  • [42] An Improved HIK for Object Categorization
    Wu, Lu
    Liu, Quan
    Wei, Qin
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [43] Multimodal object categorization by a robot
    Nakamura, Tomoaki
    Nagai, Takayuki
    Iwahashi, Naoto
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 2421 - +
  • [44] Gaussian Processes for Object Categorization
    Kapoor, Ashish
    Grauman, Kristen
    Urtasun, Raquel
    Darrell, Trevor
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 169 - 188
  • [45] Structural Context for Object Categorization
    Liu, Wei
    Yang, Yubin
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 280 - 291
  • [46] Object Tracking by Incremental Structural Learning of Deformable Parts
    Zhang, Suofei
    Xing, Lingzhi
    Zhou, Lin
    Sun, Zhixin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (01) : 255 - 276
  • [47] Ways of featuring in object categorization
    Schyns, PG
    Goldstone, RL
    Thibaut, JP
    BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (01) : 41 - +
  • [48] Ubiquitous object categorization and identity
    Kulkarni, U. P.
    Vadavi, J. V.
    Joshi, S. M.
    Sekaran, K. Chandra
    Yardi, A. R.
    2006 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATIONS, VOLS 1 AND 2, 2007, : 569 - +
  • [49] Categorization changes object perception
    Archambault, A
    Schyns, PG
    PROCEEDINGS OF THE TWENTIETH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1998, : 60 - 65
  • [50] Interleaving object categorization and segmentation
    Leibe, Bastian
    Schiele, Bernt
    COGNITIVE VISION SYSTEMS: SAMPLING THE SPECTRUM OF APPROACHERS, 2006, 3948 : 145 - 161