Extended physics-informed extreme learning machine for linear elastic fracture mechanics

被引:0
|
作者
Zhu, Bokai [1 ]
Li, Hengguang [2 ]
Zhang, Qinghui [1 ,3 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Peoples R China
关键词
Machine learning; Extreme learning machine; Crack; Singularity; Accuracy; FINITE-ELEMENT-METHOD; FREE GALERKIN METHODS; DEEP RITZ METHOD; CRACK-GROWTH; ALGORITHM; SGFEM;
D O I
10.1016/j.cma.2024.117655
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The machine learning (ML) methods have been applied to numerical solutions to partial differential equations (PDEs) in recent years and achieved great success in PDEs with smooth solutions and in high dimensional PDEs. However, it is still challenging to develop high-precision ML solvers for PDEs with non-smooth solutions. The linear elastic fracture mechanics equation is a typical non-smooth problem, where the solution is discontinuous along with the crack face and has the radial singularity around the crack front. The general ML methods for the linear elastic fracture mechanics can achieve a relative error for displacements, about 10 -3 . To improve the accuracy, we analyze and extract the singular factors from the asymptotic expansions of solutions of the crack problem, such that the solution can be expressed by the singular factor multiplied by other smooth components. Then the general ML methods are enriched (multiplied) by the singular factor and used in a physics-informed neural network formulation. The new method is referred to as the extended physics-informed ML method, which improves the approximation significantly. We consider two typical ML methods, fully connected neural networks and extreme learning machine, where the extended physics-informed ML based on the extreme learning machine (XPIELM) achieves the relative errors about 10 -12 . We also study the stress intensity factor based on the XPIELM, and significantly improve the approximation of the stress intensity factor. The proposed XPIELM is applied to a two-dimensional Poisson crack problem, a two-dimensional elasticity problem, and a fully three-dimensional edge-crack elasticity problem in the numerical tests that exhibit various features of the method.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [42] Discovering nonlinear resonances through physics-informed machine learning
    Barmparis, G. D.
    Tsironis, G. P.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (09) : C120 - C126
  • [43] Guest Editorial: Special Issue on Physics-Informed Machine Learning
    Piccialli, Francesco
    Raissi, Maizar
    Viana, Felipe A. C.
    Fortino, Giancarlo
    Lu, Huimin
    Hussain, Amir
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 964 - 966
  • [44] Physics-informed machine learning of the correlation functions in bulk fluids
    Chen, Wenqian
    Gao, Peiyuan
    Stinis, Panos
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [45] Physics-informed machine learning in asymptotic homogenization of elliptic equations
    Soyarslan, Celal
    Pradas, Marc
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [46] Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC
    Buenning, Felix
    Huber, Benjamin
    Schalbetter, Adrian
    Aboudonia, Ahmed
    Heer, Philipp
    Smith, Roy S.
    Lygeros, John
    Hudoba de Badyn, Mathias
    APPLIED ENERGY, 2022, 310
  • [47] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [48] Physics-Informed Graph Learning
    Peng, Ciyuan
    Xia, Feng
    Saikrishna, Vidya
    Liu, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 732 - 739
  • [49] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [50] M-PINN: A mesh-based physics-informed neural network for linear elastic problems in solid mechanics
    Wang, Lu
    Liu, Guangyan
    Wang, Guanglun
    Zhang, Kai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)