Extended physics-informed extreme learning machine for linear elastic fracture mechanics

被引:0
|
作者
Zhu, Bokai [1 ]
Li, Hengguang [2 ]
Zhang, Qinghui [1 ,3 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Peoples R China
关键词
Machine learning; Extreme learning machine; Crack; Singularity; Accuracy; FINITE-ELEMENT-METHOD; FREE GALERKIN METHODS; DEEP RITZ METHOD; CRACK-GROWTH; ALGORITHM; SGFEM;
D O I
10.1016/j.cma.2024.117655
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The machine learning (ML) methods have been applied to numerical solutions to partial differential equations (PDEs) in recent years and achieved great success in PDEs with smooth solutions and in high dimensional PDEs. However, it is still challenging to develop high-precision ML solvers for PDEs with non-smooth solutions. The linear elastic fracture mechanics equation is a typical non-smooth problem, where the solution is discontinuous along with the crack face and has the radial singularity around the crack front. The general ML methods for the linear elastic fracture mechanics can achieve a relative error for displacements, about 10 -3 . To improve the accuracy, we analyze and extract the singular factors from the asymptotic expansions of solutions of the crack problem, such that the solution can be expressed by the singular factor multiplied by other smooth components. Then the general ML methods are enriched (multiplied) by the singular factor and used in a physics-informed neural network formulation. The new method is referred to as the extended physics-informed ML method, which improves the approximation significantly. We consider two typical ML methods, fully connected neural networks and extreme learning machine, where the extended physics-informed ML based on the extreme learning machine (XPIELM) achieves the relative errors about 10 -12 . We also study the stress intensity factor based on the XPIELM, and significantly improve the approximation of the stress intensity factor. The proposed XPIELM is applied to a two-dimensional Poisson crack problem, a two-dimensional elasticity problem, and a fully three-dimensional edge-crack elasticity problem in the numerical tests that exhibit various features of the method.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Physics-Informed Extreme Learning Machine framework for solving linear elasticity mechanics problems
    Wang, Qimin
    Li, Chao
    Zhang, Sheng
    Zhou, Chen
    Zhou, Yanping
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 309
  • [2] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [3] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [4] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [5] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [6] Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials
    B. V. S. S. Bharadwaja
    Mohammad Amin Nabian
    Bharatkumar Sharma
    Sanjay Choudhry
    Alankar Alankar
    Integrating Materials and Manufacturing Innovation, 2022, 11 : 607 - 627
  • [7] Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials
    Bharadwaja, B. V. S. S.
    Nabian, Mohammad Amin
    Sharma, Bharatkumar
    Choudhry, Sanjay
    Alankar, Alankar
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (04) : 607 - 627
  • [8] Physics-informed machine learning for backbone identification in discrete fracture networks
    Shriram Srinivasan
    Eric Cawi
    Jeffrey Hyman
    Dave Osthus
    Aric Hagberg
    Hari Viswanathan
    Gowri Srinivasan
    Computational Geosciences, 2020, 24 : 1429 - 1444
  • [9] Physics-informed machine learning for backbone identification in discrete fracture networks
    Srinivasan, Shriram
    Cawi, Eric
    Hyman, Jeffrey
    Osthus, Dave
    Hagberg, Aric
    Viswanathan, Hari
    Srinivasan, Gowri
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (03) : 1429 - 1444
  • [10] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434