A data structure for finite element method

被引:0
|
作者
Chen, Dezhi [1 ]
Jiang, He [1 ]
Zhang, Zhe [1 ]
Pan, Ruimin [1 ]
机构
[1] State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan,430074, China
关键词
Matrix algebra - Eddy current testing - Finite element method - Data structures - Digital storage;
D O I
暂无
中图分类号
学科分类号
摘要
Nonzero elements compressed storage is a key technique for dealing with super-large sparse matrices in finite element(FE) analysis, and a proper data structure helps to improve the computation efficiency significantly. A new algorithm for nonzero elements storage is presented based on the fact that the sides of the FE elements are one-to-one corresponding to the nonzero elements of the global FE matrix, consequently, the side information can be used for indexing the nonzero elements in the compressed vector. Since the position of each element in the compressed vector is predefined in the meshing procedure, the assembly and the compression storage of the global matrix, along with the application of the boundary conditions, can be directly done in the element analysis progress, with no need of cumbersome addressing operations. The sparse matrix-vector multiplication can also be calculated fast and conveniently. Data structure and algorithm is discussed in detail, and the effectiveness of the method is validated through a FEM analysis of an eddy current testing problem. The presented method, promising a significant reduction of the memory as well as the CPU time requirements, is suitable for FE analysis of high-dimensional problems and of high-order elements. ©, 2015, Chinese Machine Press. All right reserved.
引用
收藏
页码:1 / 7
相关论文
共 50 条
  • [31] STATIC ANALYSIS OF AN INTELLIGENT STRUCTURE BY THE FINITE-ELEMENT METHOD
    RAY, MC
    BHATTACHARYYA, R
    SAMANTA, B
    COMPUTERS & STRUCTURES, 1994, 52 (04) : 617 - 631
  • [32] Spectrally formulated finite element method for vibration of a tubular structure
    Univ of Wollongong, Wollongong
    Struct Eng Mech, 3 (209-226):
  • [33] QCD analysis of structure functions by the finite-element method
    Parente, G
    Sampayo, OA
    Carrillo, S
    WORKSHOPS ON PARTICLES AND FIELDS AND PHENOMENOLOGY OF FUNDAMENTAL INTERACTIONS, 1996, (359): : 432 - 435
  • [34] A spectrally formulated finite element method for vibration of a tubular structure
    Horr, AM
    Schmidt, LC
    STRUCTURAL ENGINEERING AND MECHANICS, 1996, 4 (03) : 209 - 226
  • [35] Application of intelligent method for finite element modeling of aeronautical structure
    Xu, Y.M., 2001, AAAS Press of Chinese Society of Aeronautics and Astronautics (22):
  • [36] The structure analysis of ITER cryostat based on the finite element method
    Chao, Liang
    Ye, M. Y.
    Yao, D. M.
    Lei, Cao
    Zhou, Z. B.
    Xu Teijun
    Jian, Wang
    FUSION ENGINEERING AND DESIGN, 2013, 88 (01) : 42 - 45
  • [37] Periodic structure analysis using a hybrid finite element method
    McGrath, DT
    Pyati, VP
    RADIO SCIENCE, 1996, 31 (05) : 1173 - 1179
  • [38] Structure Optimization with Metaheuristic Algorithms and Analysis by Finite Element Method
    Ustuner, Betul
    Dogan, Erkan
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (01) : 328 - 341
  • [39] Structure optimization of cycloid gear based on the finite element method
    Gu, Lizhi, 1600, Transport and Telecommunication Institute, Lomonosova street 1, Riga, LV-1019, Latvia (18):
  • [40] Response Surface Stochastic Finite Element Method of Composite Structure
    Cai, Deyong
    Liu, Fujun
    INTERNATIONAL SYMPOSIUM ON MATERIALS APPLICATION AND ENGINEERING (SMAE 2016), 2016, 67