A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain-Computer Interfaces to Enhance Motor Imagery Classification

被引:0
|
作者
Mallat, Souheyl [1 ]
Hkiri, Emna [2 ]
Albarrak, Abdullah M. [3 ]
Louhichi, Borhen [4 ]
机构
[1] Monastir Univ, Fac Sci, Dept Comp Sci, Monastir 5019, Tunisia
[2] Kairouan Univ, Higher Inst Comp Sci, Dept Comp Sci, Kairouan 3100, Tunisia
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11432, Saudi Arabia
[4] Imam Mohammad Ibn Saud Islamic Univ, Coll Engn, Dept Mech Engn, Riyadh 11432, Saudi Arabia
关键词
brain-computer interface; electroencephalography; deep learning; convolutional neural network; COMMON SPATIAL-PATTERN; ALGORITHMS;
D O I
10.3390/s25020443
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities. Despite this promise, extracting reliable control signals from noisy brain data remains a critical challenge. In this paper, we introduce a novel approach leveraging the collaborative synergy of five convolutional neural network (CNN) models to improve the classification accuracy of motor imagery tasks, which are essential components of BCI systems. Our method demonstrates exceptional performance, achieving an accuracy of 79.44% on the BCI Competition IV 2a dataset, surpassing existing state-of-the-art techniques in using multiple CNN models. This advancement offers significant promise for enhancing the efficacy and versatility of BCIs in a wide range of real-world applications, from assistive technologies to neurorehabilitation, thereby providing robust solutions for individuals with motor disabilities.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks
    Kwon, O-Yeon
    Lee, Min-Ho
    Guan, Cuntai
    Lee, Seong-Whan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3839 - 3852
  • [32] EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface
    Phothisonothai, Montri
    Nakagawa, Masahiro
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (01) : 44 - 53
  • [33] Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
    Jia, Tianwang
    Meng, Lubin
    Li, Siyang
    Liu, Jiajing
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3442 - 3451
  • [34] Motor imagery performance from calibration to online control in EEG-based brain-computer interfaces
    Mousavi, Mahta
    de Sa, Virginia R.
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 491 - 494
  • [35] Performance Investigation of Brain-Computer Interfaces that Combine EEG and fNIRS for Motor Imagery Tasks
    Verma, Pooja
    Heilinger, Alexander
    Reitner, Patrick
    Grunwald, Johannes
    Guger, Christoph
    Franklin, David
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 259 - 263
  • [36] Motor imagery and brain-computer interfaces for restoration of movement
    Neuper, Christa
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 724 - 724
  • [37] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    GIGASCIENCE, 2017, 6 (07): : 1 - 8
  • [38] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [39] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [40] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15