Reed-Solomon (RS) codes are widely utilized in systems such as digital transmission and storage systems because of their error-correcting capability. Nevertheless, the substantial number of iterative operations inherent to existing RS code recognition algorithms results in a considerable increase in computational complexity. In this letter, a blind recognition algorithm of RS codes based on multiple threshold judgment and the matrix recording is proposed. The multiple threshold judgment method terminates the iterative process when the threshold condition is satisfied, effectively reducing the recognition process's computational complexity. Meanwhile, the matrix recording method significantly improves the recognition probability. Simulation results show that the false recognition probability of the proposed recognition algorithm is approaching the false recognition bottom bound and achieves a gain of 0.5dB for RS(31,15,8,37) compared to the low-complexity GFFT (LC-GFFT). Under favourable channel conditions, the computational complexity of the proposed recognition algorithm is reduced by 82.74% and 16.79% compared with the existing RS (31,15,8,37) and RS (255,239,8,285) blind recognition algorithms, respectively.