Intelligent algorithm for solution of nonlinear mathematical model for aeroengine

被引:0
|
作者
Engineering Inst., Air Force Engineering Univ., Xi'an 710038, China [1 ]
机构
来源
Tuijin Jishu | 2008年 / 5卷 / 614-616期
关键词
Genetic algorithms - Newton-Raphson method - Flight simulators - Aircraft engines - Flight envelopes;
D O I
暂无
中图分类号
学科分类号
摘要
Current solutions are not always convergent while genetic algorithm is inefficient. Because of this, BP neural networks was used to approach the inverse function of balance equations, and the approximate solution was used as the initial value of Newton-Raphson algorithm, thus an intelligent algorithm is proposed. Simulation results show that this algorithm can make nonlinear mathematical model for aeroengine convergent in the entire flight envelope, and also has higher efficiency compared with genetic algorithm.
引用
收藏
相关论文
共 50 条
  • [31] Mathematical model of the operational reliability of intelligent transducers
    Nadeev, AI
    Yusupov, RA
    Svechnikov, YK
    Yusupov, DR
    MEASUREMENT TECHNIQUES, 2004, 47 (01) : 10 - 16
  • [32] Mathematical Model of the Operational Reliability of Intelligent Transducers
    A. I. Nadeev
    R. A. Yusupov
    Yu. K. Svechnikov
    D. R. Yusupov
    Measurement Techniques, 2004, 47 : 10 - 16
  • [33] Study on mathematical model of intelligent batch system
    Yang, Qing
    Li, Huaizhang
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 1996, 12 (04): : 48 - 52
  • [34] Modification of static nonlinear model of thin layer element for aeroengine bolted structure
    Liu Y.
    Zhao D.
    Ai Y.
    Fu P.
    Liu S.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (06): : 1480 - 1488
  • [35] NONLINEAR MATHEMATICAL-MODEL OF COCHLEA
    LANDWEHR, FJ
    BALLY, GV
    HOKE, M
    SOBEL, R
    ARCHIV FUR KLINISCHE UND EXPERIMENTELLE OHREN-NASEN-UND KEHLKOPFHEILKUNDE, 1972, 202 (02): : 521 - 523
  • [36] A nonlinear mathematical model of the corneal shape
    Okrasinski, Wojciech
    Plociniczak, Lukasz
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1498 - 1505
  • [37] A Mathematical Model for Nonlinear Fluorescence Quenching
    de Morais e Coura, Carla Patricia
    Schneider, Ayda Henriques
    Cortez, Celia Martins
    de Oliveira Cruz, Frederico Alan
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015), 2015, 1702
  • [38] A mathematical model of a discrete nonlinear oscillator
    Arriola, L
    NEW DEVELOPMENTS IN DIFFERENCE EQUATIONS AND APPLICATIONS, 1999, : 17 - 24
  • [39] Improved nonlinear mathematical model of viscoelasticity
    Dunham, RS
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 1998, 7 (03) : 308 - 309
  • [40] Mathematical and numerical model for nonlinear viscoplasticity
    Favrie, N.
    Gavrilyuk, S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1947): : 2864 - 2880