Federated EHR: How to improve data quality maintaining privacy

被引:0
|
作者
Chiasera, Annamaria [1 ]
Toai, Tefo James [2 ]
Bogoni, Leandro Paulo [1 ]
Armellin, Giampaolo [2 ]
Jara, Juan Jose [1 ]
机构
[1] DISI, University of Trento, Trento, 38100, Italy
[2] GPI SpA, Via Ragazzi del 99, 13 - Trento, 38100, Italy
来源
2011 IST-Africa Conference Proceedings, IST 2011 | 2011年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
6
引用
收藏
相关论文
共 50 条
  • [21] Ontology-Guided Data Sharing and Federated Quality Control With Differential Privacy in Additive Manufacturing
    Yhdego, Tsegai O.
    Wang, Hui
    Chi, Hongmei
    Yu, Zhibin
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2025, 25 (01)
  • [22] Privacy-Aware Compression for Federated Data Analysis
    Chaudhuri, Kamalika
    Guo, Chuan
    Rabbat, Mike
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 296 - 306
  • [23] Data Privacy in Smart Cities - Federated Learning to the Rescue?
    Pustozerova, Anastasia
    Mayer, Rudolf
    ERCIM NEWS, 2021, (127): : 9 - 10
  • [24] Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption
    Wang, Chuanyin
    Ma, Cunqing
    Li, Min
    Gao, Neng
    Zhang, Yifei
    Shen, Zhuoxiang
    SCIENCE OF CYBER SECURITY, SCISEC 2021, 2021, 13005 : 95 - 109
  • [25] A Secure Federated Learning Mechanism for Data Privacy Protection
    Lin, Hui
    Liu, Wenxin
    Wang, Xiaoding
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 25 - 31
  • [26] Decentralized Federated Learning Preserves Model and Data Privacy
    Wittkopp, Thorsten
    Acker, Alexander
    SERVICE-ORIENTED COMPUTING, ICSOC 2020, 2021, 12632 : 176 - 187
  • [27] EHR AND HEALTH E-DATA: PRIVACY PROTECTION ISSUES IN ITALY
    Virone, Maria Gabriella
    PROCEEDINGS OF THE IADIS INTERNATIONAL CONFERENCE E-HEALTH 2012, 2012, : 281 - 285
  • [28] How to Budget Privacy in Federated Learning? A Correlated Equilibrium Perspective
    Han, Xiaoying
    Hu, Qin
    Xu, Xiaohua
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 339 - 347
  • [29] MAKING THE EHR SMARTER: PATIENT AND PROVIDER REPORTED DATA IMPROVE PERFORMANCE ON PREVENTATIVE HEALTH QUALITY MEASURES
    Bowen, Michael E.
    Fish, Jason
    Bhat, Deepa
    Moran, Brett
    Howell-Stampley, Temple S.
    Kirk, Lynne
    Batchelor, Kim
    Halm, Ethan
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2013, 28 : S118 - S118
  • [30] Inverting Gradients - How easy is it to break privacy in federated learning?
    Geiping, Jonas
    Bauermeister, Hartmut
    Droege, Hannah
    Moeller, Michael
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33