A low viscosity and energy saving phase change absorbent of DMEA/MAE/ H2O/TGME for post-combustion CO2 capture

被引:0
|
作者
Xu, Bin [1 ]
Gao, Xiaoyi [1 ]
Gao, Ge [1 ]
Jiang, Wufeng [1 ]
Li, Xiaoshan [1 ]
Luo, Cong [1 ]
Wu, Fan [1 ]
Zhang, Liqi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
关键词
Biphasic absorbent; MAE; DMEA; TGME; Energy consumption; AQUEOUS N; N-DIETHYLETHANOLAMINE SOLUTION; CARBON-DIOXIDE; MASS-TRANSFER; N; N-DIMETHYLETHANOLAMINE DMEA; AMINE SOLVENTS; REGENERATION; PERFORMANCE; ABSORPTION; MONOETHANOLAMINE; SOLUBILITY;
D O I
10.1016/j.ces.2024.121058
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The biphasic absorbent is considered one of the best substitutes for amine solutions because of its great potential to save energy consumption. However, high viscosity and poor CO2 capture capacity of biphasic solvents have emerged as major obstacles to their commercial use. In this work, a strategy to lower the viscosity of the CO2-rich phase was proposed. Based on this strategy, a promising biphasic solvent 2-Dimethylaminoethanol (DMEA)/2Methylaminoethanol (MAE)/H2O was developed by Triethylene glycol monobutyl ether (TGME) regulation. The results show that the maximum viscosity of the CO2-rich phase after CO2 absorption was only 8.34cp. When ignoring the phase separation enthalpy, the CO2 capture efficiency can reach 89.3 % when the energy consumption is 1.99GJ/ tCO2. Besides, the speciation concentration of DMEA/MAE/TGME/H2O with different CO2 loadings was determined by gas-liquid equilibrium theory. Based on the speciation concentration distribution, the possible reaction between CO2 and 2 mol DMEA/ 1.25 mol MAE goes through three stages. 13C NMR analysis was used to investigate the reaction mechanism and phase change behavior, and the salting-out effect was proved to be the reason for the phase change behavior of the DMEA/MAE/TGME/H2O systems. This work also shows that DMEA/MAE/TGME/H2O has a high CO2 absorption capacity and superior CO2 removal efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [32] Optimisation of post-combustion CO2 capture for flexible operation
    Mac Dowell, N.
    Shah, N.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1525 - 1535
  • [33] Analysis and status of post-combustion CO2 capture technologies
    Bhown, Abhoyjit S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [34] Cascaded Membrane Processes for Post-Combustion CO2 Capture
    Zhao, Li
    Riensche, Ernst
    Weber, Michael
    Stolten, Detlef
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 489 - 496
  • [35] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [36] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [37] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [38] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5
  • [39] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [40] Dynamic Operation and Simulation of Post-Combustion CO2 Capture
    Gaspar, Jozsef
    Gladis, Arne
    Jorgensen, John Bagterp
    Thomsen, Kaj
    von Solms, Nicolas
    Fosbol, Philip Loldrup
    8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 205 - 214