Mission Design and Validation of a Fixed-Wing Unmanned Aerial Vehicle for Environmental Monitoring

被引:1
|
作者
Rufino, Giancarlo [1 ]
Conte, Claudia [1 ]
Basso, Pasquale [1 ]
Tirri, Anna Elena [1 ]
Donato, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Ctr Serv Metrol & Tecnol Avanzati CeSMA, I-80146 Naples, Italy
关键词
environmental monitoring; UAV; hydrogen fuel cells; sensors integration; MBSE;
D O I
10.3390/drones8110641
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Climate change is becoming a worldwide emergency. In order to prevent catastrophic levels of climate change, three broad categories of action are ongoing: cutting emissions, adapting to climate impacts, and financing required adjustments. Cutting emissions requires stopping the use of fossil fuels in favor of renewable energy sources. Adapting to climate change and financing required adjustments need instruments for the understanding of the source causes and how effective the potential measures are. In this context, the use of Unmanned Aerial Vehicles for environmental monitoring is continuously increasing thanks to their ability to collect a wide range of environmental data, from the quality of air to the health status of vegetation, waters, and lands. This paper describes the research activities that are being performed for the design and development of a 100 kg Max Take Off Mass prototype zero-emission Unmanned Aerial Vehicle, named Daphne, destined for environmental monitoring, surveillance, and inspection missions. The developed prototype will drive the next industrialization of the vehicle. A particular focus is given to the design of the power system, based on the use of Proton Exchange Membrane fuel cells fueled with green hydrogen, the integration of the sensors allowing for multipurpose observations and measurements, and the design and validation of the relative multi-purpose missions via an innovative approach based on Model-Based System Engineering.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Fire Monitoring with a Fixed-wing Unmanned Aerial Vehicle
    El Tin, Fares
    Sharf, Inna
    Nahon, Meyer
    2022 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2022, : 1350 - 1358
  • [2] Design and fabrication of a fixed-wing Unmanned Aerial Vehicle (UAV)
    El Adawy, Mohammed
    Abdelhalim, Elhassan H.
    Mahmoud, Mohannad
    Zeid, Mohamed Ahmed Abo
    Mohamed, Ibrahim H.
    Othman, Mostafa M.
    ElGamal, Gehad S.
    ElShabasy, Yahia H.
    AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (09)
  • [3] Design and Analysis of a Fixed-Wing Unmanned Aerial-Aquatic Vehicle
    Moore, Joseph
    Fein, Andrew
    Setzler, William
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 1236 - 1243
  • [4] On Maneuverability of Fixed-Wing Unmanned Aerial Vehicle Formations
    Challa, Vinay Reddy
    Ratnoo, Ashwini
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (07) : 1327 - 1344
  • [5] Design and Control of a Hand-Launched Fixed-Wing Unmanned Aerial Vehicle
    Lu, Xinjiang
    Li, Zenghui
    Xu, Jie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3006 - 3016
  • [6] Conceptual Design of an Unmanned Fixed-Wing Aerial Vehicle Based on Alternative Energy
    Escobar-Ruiz, Alan G.
    Lopez-Botello, Omar
    Reyes-Osorio, Luis
    Zambrano-Robledo, Patricia
    Amezquita-Brooks, Luis
    Garcia-Salazar, Octavio
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2019, 2019
  • [7] Comprehensive Design and Experimental Validation of Tethered Fixed-Wing Unmanned Aerial Vehicles
    Yan, Changjin
    Yang, Jinchuan
    Zhang, Donghui
    Zhang, Shu
    Zhang, Taihua
    AEROSPACE, 2025, 12 (02)
  • [8] Control and navigation system for a fixed-wing unmanned aerial vehicle
    Zhai, Ruiyong
    Zhou, Zhaoying
    Zhang, Wendong
    Sang, Shengbo
    Li, Pengwei
    AIP ADVANCES, 2014, 4 (03)
  • [9] Agile maneuvering with a small fixed-wing unmanned aerial vehicle
    Levin, Joshua M.
    Paranjape, Aditya A.
    Nahon, Meyer
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 116 : 148 - 161
  • [10] Modeling of a rotor/fixed-wing hybrid unmanned aerial vehicle
    Liang, Chao
    Cai, Chenxiao
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11431 - 11436