Robust estimate for count time series using GLARMA models: An application to environmental and epidemiological data

被引:0
|
作者
Camara, Ana Julia Alves [1 ]
Reisen, Valderio Anselmo [2 ]
Bondon, Pascal [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Espirito Santo, PPGEA, Av Fernando Ferrari 514, BR-29075910 Vitoria, ES, Brazil
[3] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
关键词
Count time series; GLARMA model; M-estimators; Additive outliers; Respiratory diseases; PARTICULATE AIR-POLLUTION; REGRESSION-MODELS; LINEAR-MODELS; HEALTH; OUTLIERS;
D O I
10.1016/j.apm.2024.115658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Generalized Linear Autoregressive Moving Average (GLARMA) model has been used in epidemiological studies to evaluate the impact of air pollutants on health. Due to the nature of the data, a robust approach for the GLARMA model is proposed here based on the robustification of the quasi-likelihood function. Outlying observations are bounded separately by weight functions on covariates and the Huber loss function on the response variable. Some technical issues related to the robust approach are discussed and a Monte Carlo study revealed that the robust approach is more reliable than the classic one for contaminated data with additive outliers. The real data analysis investigates the impact of PM10 10 in the number of deaths by respiratory diseases in Vit & oacute;ria, Brazil.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Forecasting natural disaster frequencies using nonstationary count time series models
    Pei, Jian
    Lu, Yang
    STATISTICAL PAPERS, 2025, 66 (03)
  • [32] Bayesian methods for time series of count data
    Obeidat, Mohammed
    Liu, Juxin
    Osgood, Nathaniel
    Klassen, Geoff
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (02) : 486 - 504
  • [33] Bayesian Forecasting for Time Series of Count Data
    Nariswari, Rinda
    Pudjihastuti, Herena
    4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 427 - 435
  • [34] An empirical comparison of parametric and semiparametric time series regression models for overdispersed count data
    Ghahramani, M.
    White, S. S.
    de Leon, A. R.
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (04) : 879 - 905
  • [35] Sports and cultural habits by gender: An application using count data models
    Muniz, Cristina
    Rodriguez, Placido
    Suarez, Maria J.
    ECONOMIC MODELLING, 2014, 36 : 288 - 297
  • [36] Robust Statistical Processing of Long-Time Data Series to Estimate Soil Water Content
    Anello, Mirko
    Riani, Marco
    Bordoni, Massimiliano
    Laurini, Fabrizio
    Meisina, Claudia
    Riani, Marco
    Valentino, Roberto
    MATHEMATICAL GEOSCIENCES, 2024, 56 (01) : 3 - 26
  • [37] Robust Statistical Processing of Long-Time Data Series to Estimate Soil Water Content
    Mirko Anello
    Marco Bittelli
    Massimiliano Bordoni
    Fabrizio Laurini
    Claudia Meisina
    Marco Riani
    Roberto Valentino
    Mathematical Geosciences, 2024, 56 (1) : 3 - 26
  • [38] Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers
    Briet, Olivier J. T.
    Amerasinghe, Priyanie H.
    Vounatsou, Penelope
    PLOS ONE, 2013, 8 (06):
  • [39] Specifications tests for count time series models with covariates
    Hudecova, Sarka
    Huskova, Marie
    Meintanis, Simos G.
    TEST, 2024, : 1014 - 1040
  • [40] TIME-SERIES MODELS FOR COUNT OR QUALITATIVE OBSERVATIONS
    HARVEY, AC
    FERNANDES, C
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1989, 7 (04) : 407 - 417