A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning

被引:2
|
作者
Lin, Zhengyang [1 ,2 ]
Lin, Tao [1 ,2 ]
Li, Jun [1 ,2 ]
Li, Chen [1 ,2 ]
机构
[1] Wuhan Univ, Hubei Engn & Technol Res Ctr, Sch Elect Engn & Automat, AC DC Intelligent Distribut Network, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Elect Engn & Automat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated energy system; Load forecasting; Ensemble learning; Modal decomposition; Deep learning;
D O I
10.1016/j.apenergy.2024.124798
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate short-term multi-energy load forecasting is the cornerstone for optimal dispatch and stable operation of integrated energy system (IES). However, due to the complexity and coupling inside IES, multi-energy load forecasting faces serious challenges with data nonlinearity and instability, leading to reduced prediction accuracy. To this end, a novel short-term multi-energy load forecasting method for IES based on two-layer joint modal decomposition (TLJMD) and dynamic optimal ensemble (DOE) learning is developed in this paper. Firstly, the TLJMD method is proposed to decompose the nonlinear and nonstationary multi-energy load into several intrinsic mode functions (IMFs) to capture the periodicity and regularity within the multi-energy load. Secondly, the uniform information coefficient method is employed to select calendar, meteorological, and coupling feature that exhibit strong correlation with the multi-energy load. Eventually, the DOE model consisting of four base learners and the ensemble weight forecasting model is constructed, the IMFs and selected features are input into the DOE model to achieve the final forecasting results. The proposed method is tested on the publicly available data set from real-world scenario and compared with various forecasting methods to assess its effectiveness and accuracy. The simulation results indicate that the proposed method outperforms other forecasting methods in short-term multi-energy load forecasting for IES, with mean absolute percentage error values of 1.7025 %, 2.2244 %, and 2.3808 % for electric, heating, and cooling load forecasting, respectively.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] A GRU-Based Short-Term Multi-energy Loads Forecast Approach for Integrated Energy System
    Lu, Chaoqun
    Li, Jian
    Zhang, Guangdou
    Zhao, Zixu
    Bamisile, Olusola
    Huang, Qi
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 209 - 213
  • [22] Probabilistic Multi-Energy Load Forecasting for Integrated Energy System Based on Bayesian Transformer Network
    Wang, Chen
    Wang, Ying
    Ding, Zhetong
    Zhang, Kaifeng
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1495 - 1508
  • [23] Multi-energy Storage Evolution Model of Regional Integrated Energy System Based on Load Forecasting
    Zhang, Pengfei
    Zong, Xingchen
    Cao, Yingshuang
    Zhao, Yuheng
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 725 - 731
  • [24] Short-Term Load Forecasting Method for AC/DC Distribution System Based on Ensemble Learning
    Jiang, Shigong
    Li, Hongjun
    Wang, Yunfei
    Yang, Zhenning
    Zhu, Xiaorong
    Liu, Wei
    Han, Jun
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 1826 - 1830
  • [25] A two-layer optimal scheduling method for multi-energy virtual power plant with source-load synergy
    Ning, Liaoyi
    Liang, Kai
    Zhang, Bo
    Li, Guangdi
    ENERGY REPORTS, 2023, 10 : 4751 - 4760
  • [26] Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning
    Wang, Jiakang
    Liu, Hui
    Zheng, Guangji
    Li, Ye
    Yin, Shi
    ENERGIES, 2023, 16 (11)
  • [27] Multi-task learning based multi-energy load prediction in integrated energy system
    Lulu Wang
    Mao Tan
    Jie Chen
    Chengchen Liao
    Applied Intelligence, 2023, 53 : 10273 - 10289
  • [28] Multi-task learning based multi-energy load prediction in integrated energy system
    Wang, Lulu
    Tan, Mao
    Chen, Jie
    Liao, Chengchen
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10273 - 10289
  • [29] Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method
    Kondaiah, V. Y.
    Saravanan, B.
    ENERGIES, 2022, 15 (14)
  • [30] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)