Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement Learning

被引:0
|
作者
Palomeras, Narcis [1 ]
Ridao, Pere [1 ]
机构
[1] Univ Girona, Comp Vis & Robot Inst, Girona 17003, Spain
关键词
AUV; docking; deep reinforcement learning; AUV; STATION;
D O I
10.3390/drones8110673
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper addresses the challenge of docking an Autonomous Underwater Vehicle (AUV) under realistic conditions. Traditional model-based controllers are often constrained by the complexity and variability of the ocean environment. To overcome these limitations, we propose a Deep Reinforcement Learning (DRL) approach to manage the homing and docking maneuver. First, we define the proposed docking task in terms of its observations, actions, and reward function, aiming to bridge the gap between theoretical DRL research and docking algorithms tested on real vehicles. Additionally, we introduce a novel observation space that combines raw noisy observations with filtered data obtained using an Extended Kalman Filter (EKF). We demonstrate the effectiveness of this approach through simulations with various DRL algorithms, showing that the proposed observations can produce stable policies in fewer learning steps, outperforming not only traditional control methods but also policies obtained by the same DRL algorithms in noise-free environments.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation
    Bo Li
    Yuan-xin Xu
    Shuang-shuang Fan
    Wen Xu
    Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 1024 - 1041
  • [42] Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation
    Li, Bo
    Xu, Yuan-xin
    Fan, Shuang-shuang
    Xu, Wen
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (08) : 1024 - 1041
  • [43] Experiment on underwater docking of an Autonomous Underwater Vehicle 'ISiMI' using optical terminal guidance
    Park, Jin-Yeong
    Jun, Bong-Huan
    Lee, Pan-Mook
    Lee, Fill-Youb
    Oh, Jun-ho
    OCEANS 2007 - EUROPE, VOLS 1-3, 2007, : 966 - +
  • [44] Control and guidance for homing and docking tasks using an autonomous underwater vehicle
    Jantapremjit, Pakpong
    Wilson, Philip A.
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 3678 - 3683
  • [45] Autonomous Vehicle Driving Path Control with Deep Reinforcement Learning
    Tiong, Teckchai
    Saad, Ismail
    Teo, Kenneth Tze Kin
    bin Lago, Herwansyah
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 84 - 92
  • [46] Autonomous Vehicle Fuel Economy Optimization with Deep Reinforcement Learning
    Kim, Hyunkun
    Pyeon, Hyeongoo
    Park, Jong Sool
    Hwang, Jin Young
    Lim, Sejoon
    ELECTRONICS, 2020, 9 (11) : 1 - 19
  • [47] A Method of Deep Reinforcement Learning for Simulation of Autonomous Vehicle Control
    Anh Huynh
    Ba-Tung Nguyen
    Hoai-Thu Nguyen
    Sang Vu
    Hien Nguyen
    ENASE: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 2021, : 372 - 379
  • [48] Decision-Making of an Autonomous Vehicle when Approached by an Emergency Vehicle using Deep Reinforcement Learning
    Shoaraee, Hamid
    Chen, Liang
    Jiang, Fan
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 185 - 191
  • [49] THREE-DIMENSIONAL PATH-FOLLOWING CONTROL OF AN AUTONOMOUS UNDERWATER VEHICLE BASED ON DEEP REINFORCEMENT LEARNING
    Liang, Zhenyu
    Qu, Xingru
    Zhang, Zhao
    Chen, Cong
    POLISH MARITIME RESEARCH, 2022, 29 (04) : 36 - 44
  • [50] Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement Learning
    Polvara, Riccardo
    Sharma, Sanjay
    Wan, Jian
    Manning, Andrew
    Sutton, Robert
    ROBOTICA, 2019, 37 (11) : 1867 - 1882