Bootstrapping: A nonparametric approach to identify the effect of sparsity of data in the binary regression models

被引:3
|
作者
Department of Statistics, Shahid Chamran University, Ahvaz, Iran [1 ]
机构
来源
J. Appl. Sci. | 2008年 / 17卷 / 2991-2997期
关键词
56;
D O I
10.3923/jas.2008.2991.2997
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [32] Nonparametric pathway-based regression models for analysis of genomic data
    Wei, Zhi
    Li, Hongzhe
    BIOSTATISTICS, 2007, 8 (02) : 265 - 284
  • [33] Physics-aware nonparametric regression models for Earth data analysis
    Cortes-Andres, Jordi
    Camps-Valls, Gustau
    Sippel, Sebastian
    Szekely, Eniko
    Sejdinovic, Dino
    Diaz, Emiliano
    Perez-Suay, Adrian
    Li, Zhu
    Mahecha, Miguel
    Reichstein, Markus
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (05)
  • [34] Interval-valued data regression using nonparametric additive models
    Changwon Lim
    Journal of the Korean Statistical Society, 2016, 45 : 358 - 370
  • [35] A nonparametric smoothing method for assessing GEE models with longitudinal binary data
    Lin, Kuo-Chin
    Chen, Yi-Ju
    Shyr, Yu
    STATISTICS IN MEDICINE, 2008, 27 (22) : 4428 - 4439
  • [36] META-ANALYSIS OF FUNCTIONAL NEUROIMAGING DATA USING BAYESIAN NONPARAMETRIC BINARY REGRESSION
    Yue, Yu Ryan
    Lindquist, Martin A.
    Loh, Ji Meng
    ANNALS OF APPLIED STATISTICS, 2012, 6 (02): : 697 - 718
  • [37] Jump detection in time series nonparametric regression models: a polynomial spline approach
    Yang, Yujiao
    Song, Qiongxia
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (02) : 325 - 344
  • [38] Jump detection in time series nonparametric regression models: a polynomial spline approach
    Yujiao Yang
    Qiongxia Song
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 325 - 344
  • [39] NONPARAMETRIC REGRESSION FUNCTION ESTIMATION FOR ERRORS-IN-VARIABLES MODELS WITH VALIDATION DATA
    Du, Lilun
    Zou, Changliang
    Wang, Zhaojun
    STATISTICA SINICA, 2011, 21 (03) : 1093 - 1113
  • [40] CONDITIONAL LOGISTIC-REGRESSION MODELS FOR CORRELATED BINARY DATA
    CONNOLLY, MA
    LIANG, KY
    BIOMETRIKA, 1988, 75 (03) : 501 - 506