CONVERGENCE PROPERTIES OF PROXIMAL (SUB)GRADIENT METHODS WITHOUT CONVEXITY OR SMOOTHNESS OF ANY OF THE FUNCTIONS

被引:0
|
作者
Solodov, Mikhail, V [1 ]
机构
[1] IMPA Inst Matemat Pura & Aplicada, Estrada Dona Castronia, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
proximal gradient methods; incremental methods; nonsmooth nonconvex optimization; MINIMIZATION; OPTIMIZATION; ALGORITHMS; NONCONVEX;
D O I
10.1137/23M1592158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish convergence properties for a framework that includes a variety of proximal subgradient methods, where none of the involved functions needs to be convex or differentiable. The functions are assumed to be Clarke-regular. Our results cover the projected and conditional variants for the constrained case, the use of the inertial/momentum terms, and incremental methods when each of the functions is itself a sum, and the methods process the components in this sum separately.
引用
收藏
页码:28 / 41
页数:14
相关论文
共 50 条
  • [21] On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms
    Latafat, Puya
    Themelis, Andreas
    Patrinos, Panagiotis
    6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE, 2024, 242 : 197 - 208
  • [22] GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION
    Gilbert, Jean Charles
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) : 21 - 42
  • [23] Convergence rate analysis of proximal gradient methods with applications to composite minimization problems
    Sahu, D. R.
    Yao, J. C.
    Verma, M.
    Shukla, K. K.
    OPTIMIZATION, 2021, 70 (01) : 75 - 100
  • [24] The convergence properties of some new conjugate gradient methods
    Wei, Zengxin
    Yao, Shengwei
    Liu, Liying
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 1341 - 1350
  • [25] Convergence properties of nonmonotone spectral projected gradient methods
    Wang, CY
    Liu, Q
    Yang, XM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 51 - 66
  • [26] Convergence properties of a class of nonlinear conjugate gradient methods
    Liu, Jinkui
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (11) : 2656 - 2661
  • [27] CONVERGENCE PROPERTIES OF THE DEPENDENT PRP CONJUGATE GRADIENT METHODS
    Shujun LIAN Department of Mathematics
    College of Operations and Management
    Journal of Systems Science & Complexity, 2006, (02) : 288 - 296
  • [28] Convergence properties of the dependent PRP conjugate gradient methods
    Lian S.
    Wang C.
    Cao L.
    Journal of Systems Science and Complexity, 2006, 19 (2) : 288 - 296
  • [29] Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings
    Yen, Ian E. H.
    Hsieh, Cho-Jui
    Ravikumar, Pradeep
    Dhillon, Inderjit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [30] Parallel proximal point methods for systems of vector optimization problems on Hadamard manifolds without convexity
    Ceng, L. C.
    Li, X.
    Qin, X.
    OPTIMIZATION, 2020, 69 (02) : 357 - 383