In-situ analysis of water transport properties through a reinforced composite membrane in polymer electrolyte membrane fuel cells

被引:1
|
作者
Kim, Jiwoong [1 ]
Kim, Sehyeon [1 ]
Woo, Seong-Yong [2 ]
Chun, Hyunsoo [1 ]
Sim, Jaebong [1 ]
Kang, Sanggyu [3 ]
Min, Kyoungdoug [1 ]
机构
[1] Seoul Natl Univ, Dept Mech Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Korea Inst Ind Technol KITECH, Clean Energy Transit Grp, 102 Jejudaehak Ro, Jeju 63243, Jeju Do, South Korea
[3] Seoul Natl Univ, Dept Naval Architecture & Ocean Engn, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
Water diffusion coefficient; Electro-osmotic drag; Ionic conductivity; New dual-mode sorption model; Expanded polytetrafluoroethylene; Reinforced composite membrane; ELECTROOSMOTIC DRAG COEFFICIENTS; DIFFUSION-COEFFICIENT; MODEL; CONDUCTIVITY; SORPTION; TORTUOSITY; VAPOR;
D O I
10.1016/j.cej.2024.158078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comprehensive in-situ analysis of water transport properties through an expanded polytetrafluoroethylene (ePTFE)-reinforced composite membrane, representing a notable advancement over previous studies that primarily focused on Nafion membranes. The membrane water content was measured using dynamic vapor sorption (DVS) isotherms, and the temperature dependence of sorption was investigated using a new dual- mode sorption (NDMS) model, which showed an excellent fit with an adjusted coefficient of determination ( R adj 2 ) greater than 0.96. By employing the hydrogen pumping mode and polymer electrolyte membrane fuel cells (PEMFC) mode, we established empirical correlations for the coefficients of water diffusion, electro-osmotic drag (EOD), and ionic conductivity as functions of water content and cell temperature. The correlation results exhibited a maximum relative error of less than 3.14 %. In addition, we isolated the water diffusion coefficients of the gas diffusion layer (GDL) and catalyst layer (CL) from the membrane to refine our analysis. This study enhances the understanding of water management in PEMFCs by establishing correlations for water diffusion, EOD coefficient, and ionic conductivity. These findings underscore the potential of reinforced composite membranes in advancing fuel cell technology by optimizing water transport, which is crucial for improving fuel cell performance and enabling more precise PEMFC modeling.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells
    Brunetti, Adele
    Fontananova, Enrica
    Donnadio, Anna
    Casciola, Mario
    Di Vona, Maria Luisa
    Sgreccia, Emanuela
    Drioli, Enrico
    Barbieri, Giuseppe
    JOURNAL OF POWER SOURCES, 2012, 205 : 222 - 230
  • [32] A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells
    Ji, Mengbo
    Wei, Zidong
    ENERGIES, 2009, 2 (04) : 1057 - 1106
  • [33] Capillaries for water management in polymer electrolyte membrane fuel cells
    Cho, J. I. S.
    Neville, T. P.
    Trogadas, P.
    Bailey, J.
    Shearing, P.
    Brett, D. J. L.
    Coppens, M. -O.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (48) : 21949 - 21958
  • [34] Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells
    Asmatulu, Ramazan
    Khan, Aamer
    Adigoppula, Vinay K.
    Hwang, Gisuk
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) : 508 - 519
  • [35] GRAPHENE REINFORCED COMPOSITE BIPOLAR PLATE FOR POLYMER ELECTROLYTE MEMBRANE FUEL CELL
    Kakati, Biraj Kumar
    Ghosh, Avijit
    Verma, Anil
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011, 2012, : 301 - 307
  • [36] Improved electrochemical in-situ characterization of polymer electrolyte membrane fuel cell stacks
    Hartung, I.
    Kirsch, S.
    Zihrul, P.
    Mueller, O.
    von Unwerth, T.
    JOURNAL OF POWER SOURCES, 2016, 307 : 280 - 288
  • [37] In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis
    Bensmann, B.
    Hanke-Rauschenbach, R.
    Sundmacher, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) : 49 - 53
  • [38] Nonlinear Water Transport Through a Polymer Electrolyte Membrane Under Transient Operation of a Proton Exchange Membrane Fuel Cell
    Lee, Chanhee
    Choi, Yoora
    Kim, Younghyeon
    Yu, Sangseok
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (05) : 1183 - 1200
  • [39] Computational analysis of transport phenomena in proton exchange membrane for polymer electrolyte fuel cells
    Jung, Chi-Young
    Lee, Chi-Seung
    Yi, Sung-Chul
    JOURNAL OF MEMBRANE SCIENCE, 2008, 309 (1-2) : 1 - 6
  • [40] Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells
    Cho, EA
    Jeon, US
    Ha, HY
    Hong, SA
    Oh, IH
    JOURNAL OF POWER SOURCES, 2004, 125 (02) : 178 - 182