Carbon emissions assessment of ultra-high performance concrete in construction industry: Calculation method and case study

被引:0
|
作者
Li, Sheng [1 ]
Han, Ge [2 ]
Du, Boshi [3 ]
Jiang, Zhisheng [4 ]
Sun, Linqi [5 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Civil & Surveying & Mapping Engn Nanchang, Ganzhou 341000, Peoples R China
[2] Housing & Urban Rural Dev Bur Wuzhong Dist, Suzhou 215000, Jiangsu, Peoples R China
[3] First Co China Eighth Engn Bur Ltd, Jinan 250100, Peoples R China
[4] Shenyang Municipal Peoples Govt, Dept neurol, Shenyang 110000, Liaoning, Peoples R China
[5] Univ Surrey, Ctr Environm & Sustainabil, Guildford GU2 7XH, Surrey, England
关键词
Carbon emissions; Urban construction industry; Ultra-high performance concrete (UHPC); Ultra-high performance concrete with coarse; aggregate (UHPC-CA); Cost effectiveness; Performance benefits; AUTOGENOUS SHRINKAGE; CO2; EMISSION; CHINA; BEHAVIOR; FIBER;
D O I
10.1016/j.enbuild.2024.115260
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The promotion of high-performance concrete in engineering can significantly reduce carbon emissions in the urban construction industry, which is essential for achieving green and sustainable development goals. However, the specific contributions of ultra-high performance concrete (UHPC) and ultra-high performance concrete with coarse aggregate (UHPC-CA) have not been thoroughly investigated. To accurately quantify the carbon emission benefits of UHPC and UHPC-CA, the carbon emissions calculation method considering the influence of multiple factors for the main aboveground structure construction has been proposed. A specific 11-story reinforced concrete frame structure (RCFS) is selected for the case study. Subsequently, the carbon emissions of various types of concrete under five designed building construction programs are calculated and evaluated. Additionally, the cost-effectiveness and performance benefits are discussed concurrently. Based on an actual engineering case, this study comprehensively evaluates the environmental, cost, and performance benefits of using UHPC, UHPCCA, and ordinary concrete in the construction industry. The results indicate that both UHPC and UHPC-CA can reduce carbon emissions while enhancing the performance benefits of the RCFS and lowering construction costs. Specifically, UHPC-CA can reduce carbon emissions and construction costs by 20% at equivalent performance, while UHPC can improve performance by 76% at equivalent costs, with a 6% increase in carbon emissions. The engineering value of UHPC and UHPC-CA is remarkable, characterized by significant reductions in carbon emissions, ultra-high performance, and superior durability.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC)
    Wang, J. J.
    Zhang, S. S.
    Nie, X. F.
    Yu, T.
    COMPOSITE STRUCTURES, 2023, 312
  • [42] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [43] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [44] Study on interfacial performance of ordinary concrete composite structure strengthened by ultra-high performance concrete -A review
    Lu, Ya
    Song, Xinhua
    Du, Renyuan
    Song, Dongsheng
    Liu, Songbai
    Xu, Wei
    Wu, Xiangguo
    ADVANCES IN STRUCTURAL ENGINEERING, 2023, 26 (15) : 2797 - 2813
  • [45] Study on performance of prestressed concrete hollow slab beams reinforced by grouting with ultra-high performance concrete
    Zhang, Shouqi
    Du, Shizhao
    Ang, Yuan
    Lu, Zhenbao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2021, 15
  • [46] Influence of alkaline accelerators on the performance of ultra-high performance concrete
    Huang, He
    Li, Jianbao
    Luo, Qizhi
    Luo, Biao
    Luo, Zhengdong
    Journal of Railway Science and Engineering, 2022, 19 (05): : 1339 - 1346
  • [47] Shear performance of ultra-high performance concrete deep beams
    Zhou J.-L.
    Chen B.-C.
    Ma X.-L.
    Luo L.-L.
    Huang Q.-W.
    Su J.-Z.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2020, 20 (06): : 117 - 125
  • [48] Performance evaluation of ultra-high performance concrete designed with alccofine
    G. Gautham Kishore Reddy
    P. Ramadoss
    Innovative Infrastructure Solutions, 2021, 6
  • [49] Performance evaluation of ultra-high performance concrete designed with alccofine
    Reddy, G. Gautham Kishore
    Ramadoss, P.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2020, 6 (01)
  • [50] Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms
    Thilakarathna, P. S. M.
    Seo, S.
    Baduge, K. S. Kristombu
    Lee, H.
    Mendis, P.
    Foliente, G.
    JOURNAL OF CLEANER PRODUCTION, 2020, 262