EFFICIENT FIRST ORDER METHOD FOR SADDLE POINT PROBLEMS WITH HIGHER ORDER SMOOTHNESS

被引:0
|
作者
Wang, Nuozhou [1 ]
Zhang, Junyu [2 ]
Zhang, Shuzhong [1 ]
机构
[1] Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA
[2] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore
关键词
first-order method; nonconvex-concave minimax problem; iteration complexity; NONCONVEX; OPTIMIZATION;
D O I
10.1137/23M1566972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the complexity of finding approximate stationary points for the smooth nonconvex-strongly-concave (NC-SC) saddle point problem: min(x)max(y) f(x,y) . Under the standard first-order smoothness conditions where f is & ell; -smooth in both arguments and mu y -strongly concave in y , existing literature shows that the optimal complexity for first-order methods to obtain an & varepsilon; -stationary point is O(root kappa y & ell;& varepsilon;(-2)) , where kappa(y)=& ell;/mu y is the condition number. However, when Phi(x):=maxyf(x,y) has L2 -Lipschitz continuous Hessian in addition, we derive a first-order algorithm with an O(root kappa y(& ell;1/2)L(2)(1/4)& varepsilon;(-7/4)) complexity by designing an accelerated proximal point algorithm enhanced with the "Convex Until Proven Guilty" technique. Moreover, an improved Omega(kappa y & ell;L-3/7(2)2/7 & varepsilon;(-12/7)) lower bound for first-order method is also derived for sufficiently small & varepsilon; . As a result, given the second-order smoothness of the problem, the complexity of our method improves the state-of-the-art result by a factor of O((& ell;(2) / L-2 & varepsilon;)(1/4)) , while almost matching the lower bound except for a small O((& ell;2L2 & varepsilon;)1/28) factor.
引用
收藏
页码:3342 / 3370
页数:29
相关论文
共 50 条
  • [21] A first-order inexact primal-dual algorithm for a class of convex-concave saddle point problems
    Jiang, Fan
    Wu, Zhongming
    Cai, Xingju
    Zhang, Hongchao
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1109 - 1136
  • [22] On the Deficiency of the First-Order OttClemmow Saddle Point Method as Applied to the Sommerfeld Half-Space Problem
    Michalski, Krzysztof A.
    Mosig, Juan R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (11) : 10820 - 10827
  • [23] PRIMAL-DUAL FIRST-ORDER METHODS FOR AFFINELY CONSTRAINED MULTI-BLOCK SADDLE POINT PROBLEMS
    Zhang, Junyu
    Wang, Mengdi
    Hong, Mingyi
    Zhang, Shuzhong
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (02) : 1035 - 1060
  • [24] Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems
    Yuyuan Ouyang
    Yangyang Xu
    Mathematical Programming, 2021, 185 : 1 - 35
  • [25] An efficient method for second order boundary value problems with two point boundary conditions
    Nemani, SS
    Garey, LE
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (09) : 1001 - 1008
  • [26] A first-order inexact primal-dual algorithm for a class of convex-concave saddle point problems
    Fan Jiang
    Zhongming Wu
    Xingju Cai
    Hongchao Zhang
    Numerical Algorithms, 2021, 88 : 1109 - 1136
  • [27] On an iterative method for saddle point problems
    Tong, ZY
    Sameh, A
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 643 - 646
  • [28] On an iterative method for saddle point problems
    Zhanye Tong
    Ahmed Sameh
    Numerische Mathematik, 1998, 79 : 643 - 646
  • [29] A higher-order method for stationary shock problems
    Vulanovic, R
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 108 (2-3) : 139 - 152
  • [30] Variants of the Uzawa method for three-order block saddle point problem
    Wang, Na-Na
    Li, Ji-Cheng
    Li, Guo
    Kong, Xu
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 : 188 - 202