Adaptive Joint Sigma-Point Kalman Filtering for Lithium-Ion Battery Parameters and State-of-Charge Estimation

被引:0
|
作者
Bouchareb, Houda [1 ]
Saqli, Khadija [1 ]
M'sirdi, Nacer Kouider [2 ]
Bentaie, Mohammed Oudghiri [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Technol, LISA Lab, Fes 30000, Morocco
[2] Univ Toulon & Var, Aix Marseille Univ, HyRES Lab, LIS SASV, F-13399 Marseille, France
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2024年 / 15卷 / 11期
关键词
lithium-ion batteries; battery modeling; joint estimation; Adaptive Sigma Point Kalman Filter; state of charge estimation; MANAGEMENT-SYSTEMS; EQUIVALENT-CIRCUIT; PART; PACKS; MODELS;
D O I
10.3390/wevj15110532
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Precise modeling and state of charge (SoC) estimation of a lithium-ion battery (LIB) are crucial for the safety and longevity of battery systems in electric vehicles. Traditional methods often fail to adapt to the dynamic, nonlinear, and time-varying behavior of LIBs under different operating conditions. In this paper, an advanced joint estimation approach of the model parameters and SoC is proposed utilizing an enhanced Sigma Point Kalman Filter (SPKF). Based on the second-order equivalent circuit model (2RC-ECM), the proposed approach was compared to the two most widely used methods for simultaneously estimating the model parameters and SoC, including a hybrid recursive least square (RLS)-extended Kalman filter (EKF) method, and simple joint SPKF. The proposed adaptive joint SPKF (ASPKF) method addresses the limitations of both the RLS+EKF and simple joint SPKF, especially under dynamic operating conditions. By dynamically adjusting to changes in the battery's characteristics, the method significantly enhances model accuracy and performance. The results demonstrate the robustness, computational efficiency, and reliability of the proposed ASPKF approach compared to traditional methods, making it an ideal solution for battery management systems (BMS) in modern EVs.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [32] State-Of-Charge and Parameter Estimation of Lithium-Ion Battery Using Dual Adaptive Filter
    Takegami, Tomoki
    Wada, Toshihiro
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1332 - 1337
  • [33] State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
    Shi, Na
    Chen, Zewang
    Niu, Mu
    He, Zhijia
    Wang, Youren
    Cui, Jiang
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [34] An Adaptive Kalman Filter to Estimate State-of-Charge of Lithium-Ion Batteries
    Luo, Zhiliang
    Li, Yanjie
    Lou, Yunjiang
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1227 - 1232
  • [35] A Method of State-of-Charge Estimation for EV Power Lithium-Ion Battery Using a Novel Adaptive Extended Kalman Filter
    He, Zhicheng
    Yang, Ziming
    Cui, Xiangyu
    Li, Eric
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14618 - 14630
  • [36] A study of adaptive extended Kalman filter with different sliding window lengths for lithium-ion battery state-of-charge estimation
    Li, Xin
    Dong, Di
    Hu, Zhipeng
    Fan, Xinming
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [37] State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model
    He, Hongwen
    Xiong, Rui
    Zhang, Xiaowei
    Sun, Fengchun
    Fan, JinXin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (04) : 1461 - 1469
  • [38] Joint estimation of state of charge and state of health for lithium-ion battery based on dual adaptive extended Kalman filter
    Li, Jiabo
    Ye, Min
    Gao, Kangping
    Xu, Xinxin
    Wei, Meng
    Jiao, Shengjie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13307 - 13322
  • [39] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)
  • [40] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408