Carbon sequestration, performance optimization and environmental impact assessment of functional materials in cementitious composites

被引:1
|
作者
Chen, Kailun [1 ]
Qu, Fulin [1 ]
Sun, Zihui [2 ]
Shah, Surendra P. [3 ]
Li, Wengui [1 ]
机构
[1] Univ New South Wales, Ctr Infrastruct Engn & Safety, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[2] Univ Louisville, Dept Civil & Environm Engn, Louisville, KY 40292 USA
[3] Univ Texas Arlington, Ctr Adv Construct Mat, Dept Civil Engn, Arlington, TX 76019 USA
基金
澳大利亚研究理事会;
关键词
Carbon sequestration; Nano-TiO; 2; Graphene oxide; Wollastonite; Biochar; Cellulose fiber; LIFE-CYCLE ASSESSMENT; MECHANICAL-PROPERTIES; GRAPHENE OXIDE; CO2; SEQUESTRATION; PHOTOCATALYTIC REDUCTION; TIO2; NANOPARTICLES; DRYING SHRINKAGE; ANATASE TIO2; WOLLASTONITE; CONCRETE;
D O I
10.1016/j.jcou.2024.102986
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reviews the mechanisms of carbon sequestration, methods for testing carbon sequestration capacity, and the performance of functional materials, including wollastonite, titanium dioxide nanoparticles (Nano-TiO2), graphene oxide (GO), biochar, and cellulose fibers (CS), as well as their performance in cement-based materials. A system boundary model has been developed to facilitate a comprehensive analysis of the environmental impact associated with preparing these materials as concretes. It is demonstrated that wollastonite reacts with atmospheric carbon dioxide (CO2) to form carbonate minerals, contributing to carbon sequestration. Nano-TiO2 and GO absorb and transform CO2 through light-excited charge carriers to generate redox reactions and oxide functional groups on their surfaces and edges, respectively. Biochar achieves carbon sequestration through physical and chemical stability, while the carbon sequestration mechanism in cellulose fibers is related to their structural properties as plant materials. In cement-based materials, wollastonite significantly enhances mechanical properties by filling pores and bridging microcracks. Nano-TiO2 and GO enhance mechanical properties by providing nucleation sites and template effects, among other mechanisms. An appropriate amount of biochar improves densification and strength, while cellulose fibers facilitate the cement hydration process, thus enhancing mechanical properties. Additionally, Life Cycle Assessment (LCA) analyses demonstrate that wollastonite and cellulose fibers offer sustainable environmental benefits in producing low-carbon concrete due to their low Global Warming Potential (GWP) and minimal negative impacts on the environment and human health. This review emphasizes the pivotal role of these functional construction materials in mitigating climate change.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites
    Kim, G. M.
    Nam, I. W.
    Yoon, H. N.
    Lee, H. K.
    COMPOSITE STRUCTURES, 2018, 185 : 264 - 272
  • [32] Biochar as a sustainable additive in cementitious composites: A comprehensive analysis of properties and environmental impact
    Rashid, Sarmad
    Raghav, Abhishek
    Goyal, Arpit
    Roy, A. B. Danie
    Singh, Manpreet
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 209
  • [33] Physics-guided multi-objective mixture optimization for functional cementitious composites containing microencapsulated phase changing materials
    Shen, Zhenglai
    Brooks, Adam L.
    He, Yawen
    Wang, Jialai
    Zhou, Hongyu
    MATERIALS & DESIGN, 2021, 207
  • [34] Study on the performance optimization and carbon sequestration effects of carbon dioxide foam cement
    Feng, Tugen
    Li, Zixu
    Qiao, Guangxuan
    Zhang, Jian
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2025,
  • [35] Optimization of amount and blending of cementitious materials in high-performance concrete
    Bajorski, P
    Streeter, DA
    CONCRETE 2000: MATERIALS AND CONSTRUCTION, 2000, (1698): : 30 - 35
  • [36] Performance assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in view of sustainability
    Toledo Filho, R. D.
    Koenders, E. A. B.
    Formagini, S.
    Fairbairn, E. M. R.
    MATERIALS & DESIGN, 2012, 36 : 880 - 888
  • [37] Figure of merit for the thermal performance of cementitious composites containing phase change materials
    Thiele, Alexander M.
    Wei, Zhenhua
    Falzone, Gabriel
    Young, Benjamin A.
    Neithalath, Narayanan
    Sant, Gaurav
    Pilon, Laurent
    CEMENT & CONCRETE COMPOSITES, 2016, 65 : 214 - 226
  • [38] Long-term carbon dioxide sequestration by concretes with supplementary cementitious materials under indoor and outdoor exposure: Assessment as per a standardized model
    Younsi, Akli
    JOURNAL OF BUILDING ENGINEERING, 2022, 51
  • [39] Assessment of self-sensing capability of Carbon Black Engineered Cementitious Composites
    Deng, Hanwen
    Li, Hongliang
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 173 : 1 - 9
  • [40] Mechanical Performance of Cementitious Materials Reinforced with Polyethylene Fibers and Carbon Nanotubes
    Alaraj, Rashad R.
    Tamimi, Adil K.
    Hassan, Noha M.
    Fattah, Kazi Parvez
    FIBERS, 2024, 12 (01)