Modelling multivariate spatio-temporal data with identifiable variational autoencoders

被引:0
|
作者
Sipila, Mika [1 ]
Cappello, Claudia
De Iaco, Sandra [2 ]
Nordhausen, Klaus [1 ]
Taskinen, Sara
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[2] Univ Salento, Sect Math & Stat, DES, Lecce, Italy
关键词
Blind source separation; Dimension estimation; Kriging; Meteorological data; Shapley values; BLIND SOURCE SEPARATION; SPACE; PREDICTION; SELECTION;
D O I
10.1016/j.neunet.2024.106774
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The Spatio-Temporal Multivariate Poisson Lognormal Model
    Zamzuri, Zamira Hasanah
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [32] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [33] Rethinking Robust Multivariate Time Series Anomaly Detection: A Hierarchical Spatio-Temporal Variational Perspective
    Zhang, Xiao
    Xu, Shuqing
    Chen, Huashan
    Chen, Zekai
    Zhuang, Fuzhen
    Xiong, Hui
    Yu, Dongxiao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 9136 - 9149
  • [34] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [35] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [36] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [37] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [38] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [39] Data imputation in IoT using Spatio-Temporal Variational Auto-Encoder
    Zhang, Shuo
    Chen, Jinyi
    Chen, Jiayuan
    Chen, Xiaofei
    Huang, Hejiao
    NEUROCOMPUTING, 2023, 529 : 23 - 32
  • [40] A simple taxonomy for describing the spatio-temporal structure of environmental modelling data
    Harpham, Q. K.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 133