DoS detections based on association rules and frequent itemsets

被引:0
|
作者
Dept. of Computer Science and Engineering, Harbin Institute of Technology, Harbin 150001, China [1 ]
不详 [2 ]
机构
来源
J. Harbin Inst. Technol. | 2008年 / 2卷 / 283-289期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Mining Frequent Generalized Itemsets and Generalized Association Rules Without Redundancy
    Daniel Kunkle
    Donghui Zhang
    Gene Cooperman
    Journal of Computer Science and Technology, 2008, 23 : 77 - 102
  • [22] Visualizing frequent itemsets, association rules, and sequential patterns in parallel coordinates
    Yang, L
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 21 - 30
  • [23] An Efficient Algorithm for Mining Association Rules using Confident Frequent Itemsets
    Al-Maqaleh, Basheer Mohamad
    Shaab, Saleem Khalid
    2013 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES (ACCT 2013), 2013, : 90 - 94
  • [24] Privacy preserving distributed data mining association rules of frequent itemsets
    School of Computer Science and Technology, Huazhong University and Technology, Wuhan 430074, China
    Jisuanji Gongcheng, 2006, 13 (12-14):
  • [25] Mining association rules for classification using frequent generator itemsets in arules package
    Ledmi, Makhlouf
    Souidi, Mohammed El Habib
    Hahsler, Michael
    Ledmi, Abdeldjalil
    Kara-Mohamed, Chafia
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2023, 15 (02) : 203 - 221
  • [26] Mining Association Rules Directly using ACO without Generating Frequent Itemsets
    Manju
    Kant, Chander
    2015 INTERNATIONAL CONFERENCE ON ENERGY SYSTEMS AND APPLICATIONS, 2015, : 390 - 395
  • [27] Mining both positive and negative association rules from frequent and infrequent itemsets
    Dong, Xiangjun
    Niu, Zhendong
    Shi, Xuelin
    Zhang, Xiaodan
    Zhu, Donghua
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 122 - +
  • [28] Negative and Positive Association Rules Mining from Text Using Frequent and Infrequent Itemsets
    Mahmood, Sajid
    Shahbaz, Muhammad
    Guergachi, Aziz
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [29] Mining minimal non-redundant association rules using frequent closed itemsets
    Bastide, I
    Pasquier, N
    Taouil, R
    Stumme, G
    Lakhal, L
    COMPUTATIONAL LOGIC - CL 2000, 2000, 1861 : 972 - 986
  • [30] Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees
    Riondato, Matteo
    Upfal, Eli
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2014, 8 (04)