Tunable frequency conversion in doped photonic crystal fiber pumped near degeneracy

被引:1
|
作者
Murphy, Leah R. [1 ]
Olszewski, Mateusz J. [1 ]
Androvitsaneas, Petros [1 ,2 ]
Perez, Miguel alvarez [2 ]
Smith, Will A. M. [1 ]
Bennett, Anthony J. [2 ]
Mosley, Peter J. [1 ]
Davis, Alex O. C. [1 ]
机构
[1] Univ Bath, Ctr Photon & Photon Mat, Dept Phys, Bath BA2 7AY, England
[2] Cardiff Univ, Sch Engn, Queens Bldg, Cardiff CF24 3AA, Wales
来源
OPTICA | 2024年 / 11卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
EFFICIENT;
D O I
10.1364/OPTICA.537442
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Future quantum networks will rely on the ability to coherently transfer optically encoded quantum information between different wavelength bands. Bragg-scattering four-wave mixing in optical fiber is a promising route to achieving this, but requires fibers with precise dispersion control and broadband transmission at signal, target, and pump wavelengths. Here, we introduce a photonic crystal fiber with a germanium-doped core featuring group velocity matching at 1550 nm, the telecoms C-band, and 920 nm, within the emission range of efficient single photon sources based on InAs quantum dots. With low chromatic walk-off and good optical guidance even at long wavelengths, large lengths of this fiber are used to achieve nanometer-scale frequency shifts between wavelengths around 920 nm with up to 79.4% internal conversion efficiency, allowing dissimilar InAs dots to be interfaced. We also show how cascading this frequency conversion can be used to generate a frequency comb away from telecoms wavelengths. Finally, we use the fiber to demonstrate tunable frequency conversion of weak classical signals around 918 nm to the telecoms C-band. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
页码:1490 / 1496
页数:7
相关论文
共 50 条
  • [31] BROAD-BAND TUNABLE SINGLE FREQUENCY DIODE-PUMPED ERBIUM DOPED FIBER LASER
    COCHLAIN, CRO
    MEARS, RJ
    ELECTRONICS LETTERS, 1992, 28 (02) : 124 - 126
  • [32] High power tandem pumped photonic crystal fiber amplifier
    Wirth, C.
    Schmidt, O.
    Schreiber, T.
    Eberhardt, R.
    Tuennermann, A.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [33] Broadband and tunable fiber polarizer based on a graphene photonic crystal fiber
    Gan, Jiajie
    Deng, Qingyan
    Zeng, Zijian
    Peng, Jiantao
    Qi, Jinlin
    Zuo, Yonggang
    Zhou, Xu
    OPTICS LETTERS, 2024, 49 (19) : 5639 - 5642
  • [34] Hybrid liquid crystal-photonic crystal fiber tunable interferometer
    Poudereux, David
    Quintana, Xabier
    Corredera, Pedro
    Geday, Morten A.
    Oton, Jose M.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (09) : 2075 - 2079
  • [35] A tunable photonic crystal filter for terahertz frequency applications
    Drysdale, TD
    Blaikie, RJ
    Cumming, DRS
    TERAHERTZ FOR MILITARY AND SECURITY APPLICATIONS, 2003, 5070 : 89 - 97
  • [36] Switchable and tunable Erbium-doped fiber ring laser incorporating a birefringent and highly nonlinear photonic crystal fiber
    Chen, D.
    Shen, L.
    LASER PHYSICS LETTERS, 2007, 4 (05) : 368 - 370
  • [37] Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber
    Haakestad, MW
    Alkeskjold, TT
    Nielsen, MD
    Scolari, L
    Riishede, J
    Engan, HE
    Bjarklev, A
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (04) : 819 - 821
  • [38] Group-velocity symmetry in photonic crystal fibre for ultra-tunable quantum frequency conversion
    Parry, C.
    Main, P. B.
    Wright, T. A.
    Mosley, P. J.
    JOURNAL OF OPTICS, 2021, 23 (07)
  • [39] Wavelength tunable Yb3+-doped double-clad photonic crystal fiber laser
    Su, Hongxin
    Li, Yigang
    Lu, Kecheng
    Wang, Kun
    Guo, Qinglin
    HIGH-POWER LASERS AND APPLICATIONS IV, 2008, 6823
  • [40] Frequency conversion in nonlinear photonic crystal of strontium tetraborate
    A. S. Aleksandrovsky
    A. M. Vyunishev
    A. I. Zaitsev
    A. A. Ikonnikov
    G. I. Pospelov
    V. E. Rovskii
    V. V. Slabko
    Optics and Spectroscopy, 2011, 111 : 150 - 156