Real-time object tracking and segmentation using adaptive color snake model

被引:0
|
作者
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea, Republic of [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
不详 [6 ]
不详 [7 ]
不详 [8 ]
不详 [9 ]
不详 [10 ]
不详 [11 ]
不详 [12 ]
机构
来源
Int. J. Control Autom. Syst. | 2006年 / 2卷 / 236-246期
关键词
Adaptive control systems - Algorithms - Image segmentation - Motion estimation - Real time systems - Robustness (control systems);
D O I
暂无
中图分类号
学科分类号
摘要
Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called adaptive color snake model (ACSM) for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.
引用
收藏
相关论文
共 50 条
  • [21] Fusing Time-of-Flight Depth and Color for Real-Time Segmentation and Tracking
    Bleiweiss, Amit
    Werman, Michael
    DYNAMIC 3D IMAGING, PROCEEDINGS, 2009, 5742 : 58 - 69
  • [22] ASSET-2: Real-time motion segmentation and object tracking
    Oxford Univ Cent for Functional, Magnetic Resonance Imaging of the, Brain, Headington, United Kingdom
    Real Time Imaging, 1 (21-40):
  • [23] ASSET-2: Real-time motion segmentation and object tracking
    Smith, SM
    REAL-TIME IMAGING, 1998, 4 (01) : 21 - 40
  • [24] Robust and Real-time Object Tracking using Scale-Adaptive Correlation Filters
    Hu, Qingyong
    Guo, Yulan
    Lin, Zaiping
    An, Wei
    Cheng, Hongwei
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 420 - 427
  • [25] Siamese Network Using Adaptive Background Superposition Initialization for Real-Time Object Tracking
    Zhu, Junan
    Chen, Tao
    Cao, Jingtai
    IEEE ACCESS, 2019, 7 : 119454 - 119464
  • [26] Real-time Tracking of Handheld Object from Color or Depth Images
    Lim, Guan Ming
    Jatesiktat, Prayook
    Ang, Wei Tech
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [27] Real-time Approach for Adaptive Object Segmentation in Time-of-Flight Sensors
    Parvizi, Ehsan
    Wu, Q. M. Jonathan
    20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 1, PROCEEDINGS, 2008, : 236 - 240
  • [28] REAL-TIME OBJECT TRACKING USING MOTORIZED CAMERA
    Pawlowski, Pawel
    Borowczyk, Krzysztof
    Marciniak, Tomasz
    Dabrowski, Adam
    SPA 2009: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2009, : 110 - 115
  • [29] Adaptive Template and Transition Map for Real-Time Video Object Segmentation
    Park, Hyojin
    Yoo, Jayeon
    Venkatesh, Ganesh
    Kwak, Nojun
    IEEE ACCESS, 2021, 9 : 116914 - 116926
  • [30] Adaptive Template and Transition Map for Real-Time Video Object Segmentation
    Park, Hyojin
    Yoo, Jayeon
    Venkatesh, Ganesh
    Kwak, Nojun
    IEEE Access, 2021, 9 : 116914 - 116926